HOW TO CALCULATE THE REQUIRED KVA SIZE NEEDED FOR A D-M-E 3 PHASE POWER TRANSFORMER

1. What is worst case phase wattage? _____________ (see example below)

2. Multiply worst case phase wattage x 3 phases. The resultant is the total wattage. _____________

3. Sizing the fuse for the transformer is:
 Amps = Total Wattage / (1.73 X Voltage)
 _____________ Amp Fuses

MAINFRAME PHASING
PHASES TO APPLIED ZONES

L1 - L2	1, 4, 7, 10
L2 - L3	2, 5, 8, 11
L3 - L1	3, 6, 9, 12

Add all "A" zones wattages to give total watts "A". Repeat for "B" and "C".

Example:
Total watts "A" = 1200 + 600 + 340 = 2140 W
Total watts "B" = 750 + 240 + 340 = 1330 W
Total watts "C" = 2000 + 600 + 800 = 3400 W
Worst case phase wattage = 3400 W ("C")
Total Wattage = 3400 X 3 = 10,200 W
Requires min. of 10.2KVA transformer.
Rounding to next available = 15 KVA

Fuse for transformer legs =
10,200 W / (1.73 X 240 V) = 24.5 Amp fuse
Rounding to next available = 25 Amp *

*Note: 50 Amps max. for 50 Amp circuit breakers, 70 Amps max. for 70 Amp circuit breakers.
6 KVA, 9 KVA & 15 KVA transformers are standard sizes available.
Other transformer sizes available on special request.