Microprocessor-Based
Temperature Control Unit
With Digital Display

User's Manual

D-M-E Company
D-M-E Standard
Smart Series Microprocessor-Based
Temperature Control Unit
with Digital Display
SSH-10-01 & SSH-10-02

GENERAL DESCRIPTION
This new Smart Series unit combines today's electronics with D-M-E's keen sense for human engineering, making it the most user friendly controller on today's market. From its versatile, easy to read multi-function digital readout to its unique Smart Start* heater dry out circuitry, it is indeed a unit that is not only productive but instructive.

During start-up, the unit's microprocessor analyzes all initial conditions and computes the amount of power required to uniformly raise the heater temperature from ambient to setpoint. After the start-up function, Smart Start procedure automatically kicks in. This procedure uses predetermined power output levels to safely dry out any heater moisture, thereby prolonging heater life. When Smart Start ends, the heater advances to setpoint and normal automatic operation takes over.

The multi-function digital readout displays setpoint temperature (auto mode) or percentage of power (manual mode), and can provide a readout of actual process temperature at the touch of a button. Diagnostics faults for open, reversed or shorted thermocouple are also displayed digitally, and the unit automatically inhibits power to the heater load until such faults are corrected. The units LED display indicators (located at the top right of each digit) show the mode of operation and serve to indicate when the readout is displaying process temperature or percentage of power. The power to heater load LED doubles as a Smart Start indicator by blinking during Smart Start. Five separate color-coded LED's located under the display, indicate temperature deviation and over/under temperature conditions at a glance.

OPERATION:
Automatic Mode: The microprocessor maintains temperature using a closed loop PID control method. Closed loop means the unit continuously looks at the process temperature to determine whether or not to adjust the power delivered to the heater. With PID control, it anticipates the system characteristics to make accurate adjustments and correct for errors. "Fuzzy logic" is used to minimize overshoot on start ups and to prevent over and undershoots when changing setpoints.

Manual Mode: For open thermocouple or thermocouple failure, open loop-percent power is used. In manual mode, the microprocessor maintains a power level using an open loop power control method. Open loop means the process temperature is not used to determine whether or not adjustments should be made. This enables the user to continue production and override thermocouple wire breaks, short circuits, or lead reversals until the problem has been resolved.

Manual mode overrides thermocouple break protection, reversed thermocouple, and any normal automatic modes.

Smart Start*: Smart Start is automatic on start-up in the auto mode, and provides a linear ramp to set point for heater bake out. Smart Start is complete when four minutes thirty seconds expire or when set point is reached, or when temperature exceeds 200°F.

Power-Up: Upon power-up, the unit retains the same set point and operation mode as when the unit was turned off.

Input Fault: Thermocouple break protection, and shorted or reversed thermocouple all override Smart Start and normal modes. Output is inhibited.

FEATURES:
• Fully self-tuning, fuzzy logic, microprocessor-based PID control
• High speed time proportioning power drive for reliable and precise control
• Zero crossing triac triggering for minimum RFI
• Automatic linear Smart Start to prolong heater life
• Process temperature readout operational even in manual mode as long as thermocouple (T/C) is intact
• Automatic T/C break protection and cold junction compensation
• High impedance potentiometric input allows long distance T/G wiring
• 100% solid state circuitry, no mechanical relays
• Completely self contained, no external output devices or power supplies required
• Fast acting fuses are provided on both sides of the AC line
• Electrically isolated with grounded case for operator safety
PERFORMANCE SPECIFICATIONS:
Auto and Manual Control Modes: Time proportioning
Temperature Range: Ambient to 999°F (537°C)
Control Accuracy: +/-1°F (0.5°C) dependent on the total thermal system
Temperature Stability: +/-0.5% of full scale over the ambient range of 32 to 120°F (0 to 50°C)
Calibration Accuracy: Better than 0.2% of full scale
Cycle Time: 0.33 seconds
Power Response Time: Less than 0.13 seconds
Reset: Automatically corrects reset to no more than +/-2°F (1°C) at all settings
Manual Control: Adjustable from 0-99%. Maintains output power to within 1% of setting
Advanced Diagnostics Indicators: LEDs and 3-digit, 7-segment display
Smart Start® (SS): Linear ramp from initial temperature to setpoint
SS Duration: 4 1/2 minutes
SS Override Temperature: 200°F (93°C)
Operational Mode Priority:
• SS precedes auto mode
• Thermocouple (T/C) break overrides SS and Auto modes
• Reversed or shorted T/C overrides SS and Auto modes
• Manual control overrides T/C break, reversed T/C and Auto modes
• The output is inhibited during all fault conditions in automatic mode

DIAGNOSTICS: (See figure 1)
The SSH diagnostics automatically alert the user to a fault condition.
• Shorted thermocouple displays flashing Sho in the auto mode (output inhibited), or is on steady in the manual mode when reading process temperature.
• Troubleshooting: Check for damage to the thermocouple lead wire. Also, check for bare, twisted or pinched leads, or excessive distance between the heater and thermocouple.
• Open thermocouple indicated by oPE flashing while in the auto mode (output inhibited), or on steady in the manual mode when reading process temperature.
• Troubleshooting: Check the thermocouple connections and wires for broken leads or check for damage to the sensor.
• Reversed thermocouple displays flashing bAC while in the auto mode (output inhibited), or on steady in the manual mode when reading process temperature.
• Troubleshooting: Check thermocouple wiring for reversed leads.
• Over/Under temperature. The red deviation LED on the left, flashes when the process temperature is below set point by 40°F or more. The red deviation LED on the right flashes when the process is above set point by 40°F or more.
• Troubleshooting: Check for:
 Under temperature; heater failure, low line voltage, t/c problem.
 Over temperature; output failure, shorted triac, interacting zones.

INPUT SPECIFICATIONS:
Thermocouple (T/C) Sensor: Type "J", grounded or ungrounded
External T/C Resistance: High impedance potentiometric input allows long distance T/C wiring
T/C Isolation: Isolated by control circuit power supply.
Cold Junction Compensation: Automatic, better than 0.02°F/°C (0.01°C/°C)
T/C Break Protection: Automatically inhibits power to heater in automatic mode
Reversed T/C Protection: Automatically inhibits power to heater in automatic mode
Shorted T/C Protection: Automatically inhibits power to heater in automatic mode
Input Type: Potentiometric
Input Impedance: 22 Megohms
Input Protection: Diode clamp, RC filter
Input Amplifier Stability: 0.02°F/F (0.01°C/°C)
Input Dynamic Range: 1000°F (550°C)
Common Mode Rejection Ratio: Greater than 100 db
Power Supply Rejection Ratio: Greater than 90 db

OUTPUT SPECIFICATIONS:
Voltage/Power Capability:
SSH-10-02: 240 VAC nominal, 10 amps max., (2400 watts.)
SSH-10-01: 120 VAC nominal, 10 amps max., (1200 watts.)

Output Drive: Internal solid state triac, triggered by zero AC crossing pulses

Overload Protection:
10 AMP: Fuses are provided on both sides of AC line

Transient Protection: dv/dt and transient pulse suppression included

Power Line Isolation: Optically and transformer isolated from AC lines. Isolation voltage is greater than 2500 volts

SHORTED THERMOCOUPLE (T/C) Indicator: Digital display (Sho) alternates with normal display
OPEN T/C Indicator: Digital display (OPE) alternates with normal display
REVERSED (BACKWARD) T/C Indicator: Digital display (BAC) alternates with normal display

2. TEMPERATURE DEVIATION LIGHTS: Indicate amount of deviation from setpoint temperature. Outer lights blink when extreme over or under temperature conditions (+/- 40°F) exist.
Temperature Deviation Indicators: Five separate LEDs:
+/-20°F/11°C = (Red),
+/-10°F/5°C = (Yellow),
0°F/0°C = (Green)

3. VIEW PROCESS TEMP BUTTON: Depress to show process temp on display. Release to return display to setpoint (in Auto mode) or % power (in Manual mode).

4. SETPOINT / % POWER ADJUSTMENT KNOB: Precision 10 turn potentiometer adjusts setpoint (Auto) or % power (Manual).
Auto (Setpoint) Control:
Precision 10 turn potentiometer.
Range: 0 to 999°F (0 to 537°C).
Resolution: 1°F (1°C)

Manual (% Power) Control:
Precision 10 turn potentiometer.
Digital display indication
Range: 0 to 99%

5. AUTO/MANUAL SWITCH: Toggle switch, selects automatic (setpoint temp) or manual (% power) control mode.

6. POWER ON/OFF SWITCH: Controls AC power to unit. 16 amp rocker switch, UL, CSA, VDE approved.

7. °F/°C Indicator: Illuminates when degrees °C mode is selected. Mode is selected by switch SW3, (see figure 5).
REAR PANEL: (See figure 3)
1. MOLD POWER/TERMCOPLE CONNECTOR: Is connected to the mold heater and thermocouple connections. Figure 4 show the power/thermocouple wiring diagram.

2. POWER CORD: Connect the line voltage to operate the unit as follows: Connect the Blue wire to Line 1 (L1), the Brown wire to Line 2 (L2), the Green/Yellow wire to Earth Ground. SEE FIGURE 5 BEFORE CONNECTING POWER TO UNIT.

3. FUSE HOLDER: ABC10 fuse is contained within the fuse holder. Press in and turn counter-clockwise to access fuse.

ELECTRICAL POWER SPECIFICATIONS:
Input Voltage: 240/120 VAC +10% -20%
Frequency: 50/60 Hz
DC Power Supplies: Internally generated, regulated and compensated
Unit power usage: Less than 5 watts, excluding load
Dimension:
10 AMP: 7.2"W x 2.7"H x 8.6"D (18.29 x 6.86 x 21.84cm)
NOTE: Use SSH-10-01 for 120 VAC operation. Use SSH-10-02 for 240 VAC operation.
FUSE REQUIREMENTS: (2) ABC-10 fuses (Note: (2) spare fuses included with unit).

CALIBRATION PROCEDURE
1. Turn power on and let unit warm up for 30 minutes.
2. Set the simulation temperature to 200 degrees F.
3. Adjust the OFFSET trimpot, R13, to read 200 degrees on the display.
4. Set the simulation temperature to 800 degrees F.
5. Adjust the SLOPE (GAIN) trimpot, R17, to read 800 degrees on the display.
6. Repeat steps 2 thru 5 until no further trimpot adjustment is needed.
7. Turn power off. Unit is now calibrated.

RETURN POLICY:
The D-M-E® SSH units are warranted for 1 year parts and labor, excluding fuses.

Contact D-M-E Customer Service for return authorization for repairs or warranties. Replacement parts are also available through the Customer Service Department.

D-M-E Customer Service
In U.S., West Coast: 1-213-263-9261
Elsewhere in U.S.: 1-800-626-6653
In Canada: 1-416-677-6370

SERVICE CENTER U.S.A.
D-M-E WORLD HEADQUARTERS
29111 STEPHENSON HIGHWAY
MADISON HEIGHTS, MICHIGAN 48071
TELEFAX (810) 938-6174

REPLACEMENT PARTS LIST
To meet warranty requirements, use only DME® parts.

Q7, Triac, 40 Amp, 600 Volt, Q6040P
Q6040P
S1, Power Rocker Switch, 16 Amp, 250 VAC
RPM0008
T1, Transformer, 240/120 Volt, DST-4-16
RPM0009
F1, F2, Fuse, 10 Amp, 250 Volt
ABC10
U5, Triac Driver, MOC3041
RPM0010
U4, Microprocessor (DME proprietary software) SSM0001
RPM0013
U2, Operational Amplifier, LM324
U8, Operational Amplifier, OP07
RPM0014
R23, Potentiometer, 10K, 359GS-001-103
RPM0015

G-Series®, Smart Series®, Smart Start®, and D-M-E® are all registered trademarks of D-M-E Company.
Figure 5 - Component layout, SSH-1042 main board

120/240 VAC jumpers (120 VAC shown installed)
To set to 120 VAC install jumpers J1 and J2, remove J4
To set to 240 VAC install jumper J4, remove J1 and J2