
DME Stellar® 5000 Hot Runner Systems Rectangular MNAs

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

TABLE OF CONTENTS

Section 1: Stellar® Rectangular MINA		8-Drop (30 Pitch)	110_115
Pre-Assembly Design & Machining Guidelines		12-Drop (30 Pitch)	
General Assembly – Section View		16-Drop (30 Pitch)	
Gating Style Selection & Design Procedure		Manifold Heater Layouts	
Gate Details		Wire Pocket Machining Details	
Manifold Options	8	Wife Focket Machining Details	137
Heated and Unheated MEN Options	9	Section 2: Stellar® Rectangular MNA	
Metric Dimensions:			138-150
Nozzle Selection & Metric Calculations	10-11	Assembly Information	
2-Drop (30 Pitch)	12-15	Assembly Instructions	138-140
2-Drop (40 Pitch)	16-19	Inspection of the Stellar Manifold & Components	139
2-Drop (50 Pitch)	20-23	Manifold Assembly	141
2-Drop (70 Pitch)	24-27	Nozzles with Standard Coil Heater	142-143
2-Drop (90 Pitch)	28-31	Nozzles with High Performance Heater	144-145
4-Drop (17 x 21 Pitch)	32-35	Wiring Schematics	146
4-Drop (30 x 30 Pitch)	36-39	Parts List	147-150
4-Drop (30 Pitch In-Line)	40-43	Ocation O Otalion® Decision MANA	
6-Drop (30 Pitch)	44-47	Section 3: Stellar® Rectangular MNA	454 450
8-Drop (30 Pitch)	48-51	Ordering Information	151-159
12-Drop (30 Pitch)	52-55	Ordering Procedure	151
16-Drop (30 Pitch)	56-59	Manifold & Components Sub-Assembly Section View	152
Manifold Heater Layouts	60-72	Sub-Assembly Parts List and Item Numbers	153-154
Wire Pocket Machining Details		Nozzle Body Information	155
Inch Dimensions:		Heated MEN Sub-Assembly	156
Nozzle Selection & Metric Calculations	74-75	Unheated MEN Sub-Assembly	157
2-Drop (30 Pitch)	76-79	Locating Rings	158
2-Drop (40 Pitch)	80-83		
2-Drop (50 Pitch)	84-87		
2-Drop (70 Pitch)	88-91		
2-Drop (90 Pitch)	92-95		
4-Drop (17 x 21 Pitch)	96-99		
4-Drop (30 x 30 Pitch)	100-103		
1 \	104-107		
6-Drop (30 Pitch)	108-111		

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

IMPORTANT SAFETY INFORMATION

A hot runner system includes electrical elements and may contain molten plastic at elevated temperature and pressure. To avoid injury, exercise caution by reading these instructions before servicing or operating the system.

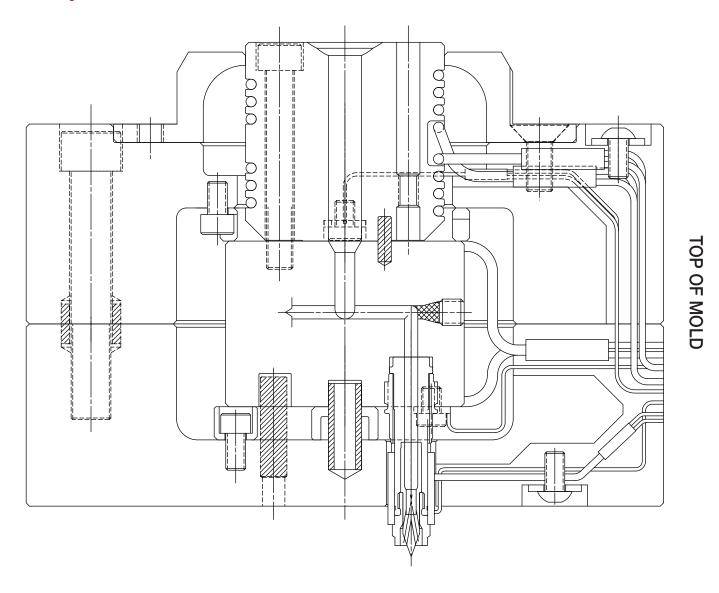
These instructions must be passed on to the end user where they should be read before using this product. Failure to do so may result in serious injury or death.

Failure to comply may result in serious injury or death:

ELECTRICAL HAZARDS

Improper voltages or grounding can result in electrical shock. Use only with proper voltage and a proper earth ground. To avoid electrical shock, do not operate product when wet. Do not operate this equipment with covers or panels removed. To avoid electrical shock, turn off main power disconnect and lockout/tag out before servicing this device. Do not connect temperature sensors to electrical power. It will damage the product and it can cause fire, severe injuries or even death.

If green ground wire present, wire must be connected to ground. Do not rebend rigid leads. Rebending leads might result in damage to circuit. Product might absorb moisture when cool. Use low Voltage or power to drive out residual moisture before applying full power. Failure to do so may cause damage to this product.

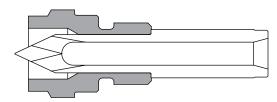

Failure to comply may result in serious injury or death:

STORED ENERGY AND HIGH TEMPERATURE HAZARDS

This product maintains molten plastic at high pressure. Use caution when operating and servicing the system. Physical contact with molten plastic may result in severe burns. Proper protective equipment, including eye protection, must be worn. This product has heated surfaces. Use caution when operating and servicing the system to avoid severe burns. Proper protective equipment should be worn.

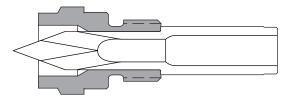
General Assembly - Section View

Fig. 1-1


Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

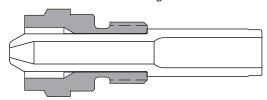
Gating Style Selection


Standard Point Gate Tip Sub-Assembly, SXG5110

- For use with unfilled resins up to 290°C (550°F)
- Fits Gate Details shown in Fig. 1-2

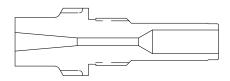
High Performance Point Gate Tip Sub-Assembly, SXG5020

- For use with unfilled and filled resins up to 330°C (625°F)
- Fits Gate Details shown in Fig. 1-2



Gating Style Selection - Item Numbers

TIP Sub-Assembly Item Number	Description	TIP Item Number	TIP CTE (10 -6/degC)	Retainer Item Number	Gating Style	Applicable Stellar System
SXG5110	Standard Point Gate Tip Sub-Assembly	SXT4010	17.5	SXF5100	Point Gate	Standard
SXG5020	High Performance Point Gate Tip Sub-Assembly	SXT5010	5.5	SXF5000	Point Gate	High Performance
SXG5201	High Performance Thru Hole Tip Sub-Assembly	SXT5200	5.5	SXF5000	Thru Hole Gate	High Performance
SXT1040	Sprue Gate	SXT1040	12.8	N/A	Sprue Gate	Standard

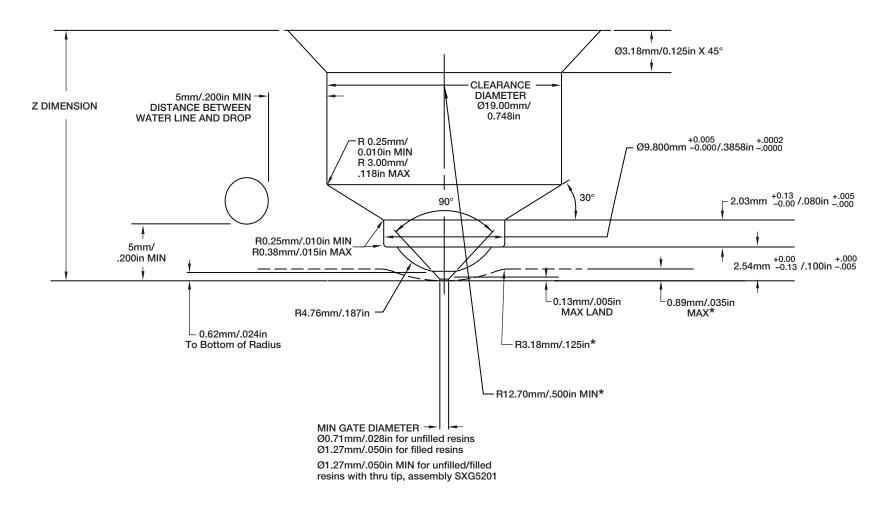

High Performance Thru Hole Tip Sub-Assembly, SXG5201

- For use with unfilled and filled resins up to 330°C (625°F)
- Fits Gate Details shown in Fig. 1-2

Sprue Gate Tip, SXT1040

- For use with unfilled and filled resins up to 330°C (625°F)
- Fits Gate Details shown in Fig. 1-3

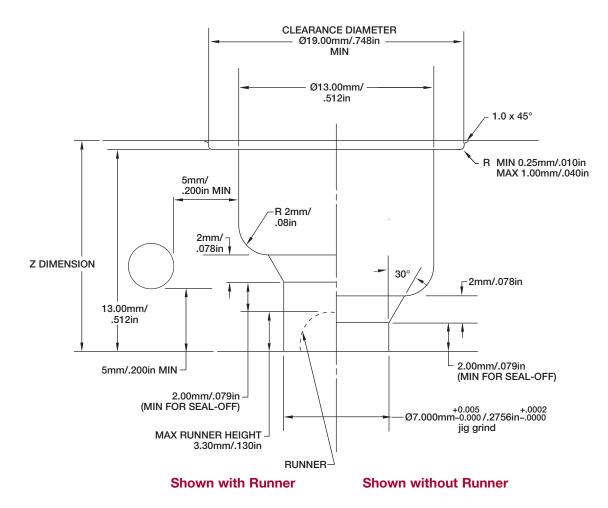
Design Procedure


- 1. Select the proper gating style.
- 2. Select the appropriate rectangular manifold configuration. See pages 8 and 9.
- 3. Calculate the nozzle plate thickness. See pages 10-11 (metric) or pages 74-75 (inch).
- 4. Follow the machining guidelines for the nozzle plate and the manifold retainer plate for the manifold size required. See pages 12-73 (metric) or pages 76-137 (inch).
- 5. Add the wire channel paths, assembly bolts, alignment dowels, water lines, guide/leader pins, etc., as needed. For wire channel design, see page 73 (metric) or page 137 (inch).

www.dme.net

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

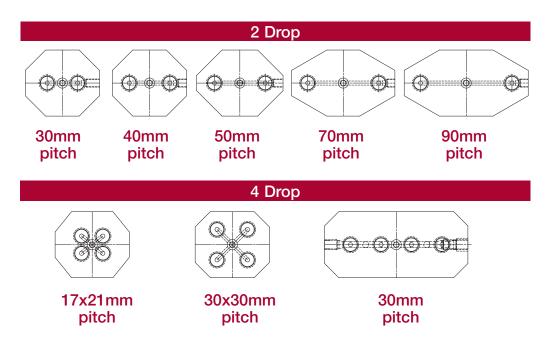
Gate Details for use with Hardened Steel (50 HRC minimum)


Fig. 1-2 Gate Details for Standard Point Gate and High Performance Point Gate and Thru Hole Tips (SXG5110, SXG5020, SXG5201); For gating onto a flat surface or into a recess ("dimple").

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

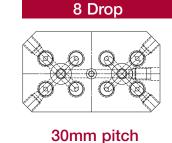
Fig. 1-3 Gate Details for Sprue Gate Tips, SXT1040


NOTES for Figures 1-2 and 1-3:

- 1. If gate detail does not properly fit the application, contact DME for assistance about gate detail options.
- 2. Position gate detail within ±0.013mm/.0005in from nominal.
- The gate diameter can be opened by the customer to suit the application.
 (The land must be re-machined to the maximum dimension after increasing the gate diameter.)
- 4. Water lines are required in "A" plate for proper gate cooling.
- Position water lines as close as possible but not closer than the minimum distance shown to provide a safe steel condition.
- 6. For faster color changes, remove ("decone") the resin from the front of each point gate tip prior to changing colors.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Manifold Options - Rectangular MNAs


NOTE: Position gate detail within ±0.013mm/.0005in from nominal.

Rectangular MNA Item Numbers

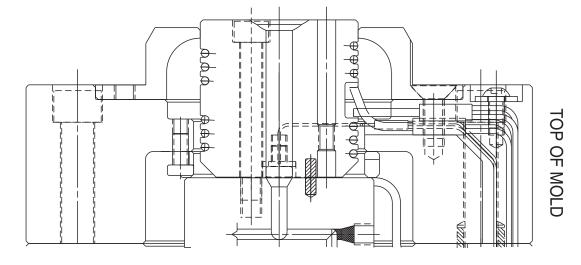
Manifold and Components	ents (Length x Width)		
Sub-Assembly Item No.	Description	Millimeters	Inches
SRC3002	2-Drop 30	73.02 x 65.00	2.875 x 2.559
SRC4002	2-Drop 40	83.00 x 65.00	3.268 x 2.559
SRC5002	2-Drop 50	92,00 x 65.00	3.622 x 2.559
SRC7002	2-Drop 70	101.60 x 65.00	4.00 x 2.559
SRC9002	2-Drop 90	122.00 x 65.00	4.803 x 2.559
SRC0004	4-Drop 17x21	79.02 x 65.00	3.111 x 2.559
SRC3304	4-Drop 30x30	73.02 x 65.00	2.875 x 2.559
SRC3004	4-Drop Inline	141.00 x 65.00	5.551 x 2.559
SRC3306	6-Drop 30	101.00 x 78.00	3.976 x 3.071
SRC3308	8-Drop 30	135.00 x 79.00	5.315 x 3.110
SRC3312	12-Drop 30	135.00 x 105.00	5.315 x 4.134
SRC3316	16-Drop 30	135.00 x 135.00	5.315 x 5.315

12 Drop

30mm pitch

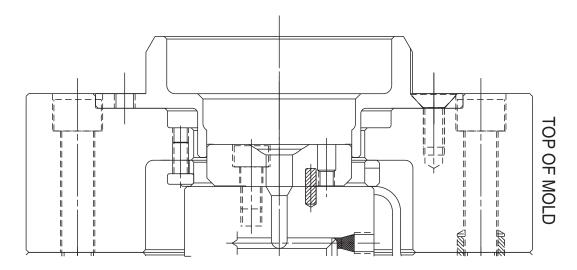
16 Drop

30mm pitch


Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Heated and Unheated MEN Options

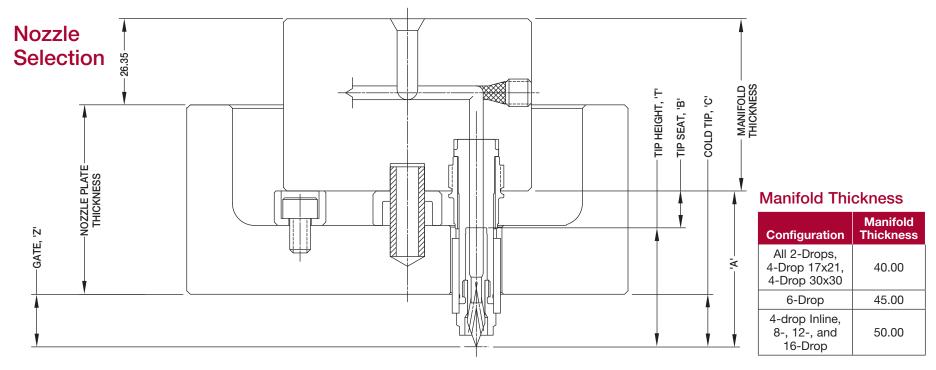

Heated MEN Design

Preferred for most applications.

Unheated MEN Design

For use with commodity resins only; i.e., PE, PP, PS.

NOTE: See Fig. 1-1 for nozzle plate section view.


www.dme.net

Metric Dimensions

SECTION 1

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Tip Information for Gating Styles

,					
TIP Sub-Assembly Item No.	Gating Style	TIP CTE (10-6/degC)	"T" "T" = "A" - "B"	Applicable Stellar System	
SXG5110	Standard Point Gate Tip Sub-Assembly	17.5	34.40	Standard	
SXG5020	High Performance Point Gate Tip Sub-Assembly	5.5	34.40	High Performance	
SXG5201	High Performance Thru Hole Tip Sub-Assembly	5.5	34.40	High Performance	
SXT1040	Sprue Gate	12.8	34.40	Standard	

"A" and "B" Chart for Gating Styles

71 and B chart for dating ctyles				
Nozzle Sub- Assembly Item No.	Point Gate "A"	Sprue Gate "A"	"B"	Notes
SXY0065 SXY0965	65.10	N/A	30.70	Standard coil heater; High performance heater
SXY0085 SXY0985	85.10	N/A	50.70	Standard coil heater; High performance heater
SXY0105 SXY0905	105.10	N/A	70.70	Standard coil heater; High performance heater
SXY0125 SXY0925	125.10	N/A	90.70	Standard coil heater; High performance heater
SXY0145 SXY0945	145.10	N/A	110.70	Standard coil heater; High performance heater
SXY8065	N/A	65.10	30.70	Standard coil heater with snap ring
SXY8085	N/A	85.10	50.70	Standard coil heater with snap ring
SXY8105	N/A	105.10	70.70	Standard coil heater with snap ring
SXY8125	N/A	125.10	90.70	Standard coil heater with snap ring
SXY8145	N/A	145.10	110.70	Standard coil heater with snap ring

NOTE: All units are in mm.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Metric Calculations

Equations

1. "Z" = "C" + Expansion

NOTE: The minimum "Z" dimension is 13.00 for the point gate and sprue gate. The maximum "Z" dimension is 115.00 for the point gate and sprue gate.

- 2. Nozzle Plate Thickness = (MT 26.35) + "A" "C," thickness ≥ 43.65, 48.65 or 53.65 (check nozzle plate machining detail).
- 3. Expansion = Delta T (°C) x [0.0000115 x (Manifold Thickness + "B") + CTE tip x "T"] 0.09 + 0.0002875 x [Tmold(°C) 20]

NOTE: Valid for point gate tips. For sprue gate tips use the point gate nozzle plate thickness.

4. Upper Support Ring Gap = (Delta T (°C) x 0.0000115 x Manifold Thickness) – 0.03

Where: CTE tip is the coefficient of thermal expansion of the tip

Delta $T(^{\circ}C) = Tmelt - Tmold (expressed in ^{\circ}C)$

Delta $T(^{\circ}C)$ = Delta $T(^{\circ}F) / 1.8$

"Z," "C," "B," "T," Upper Support Ring Gap, Expansion and Nozzle Plate Thickness are all expressed in mm.

Procedure and Notes

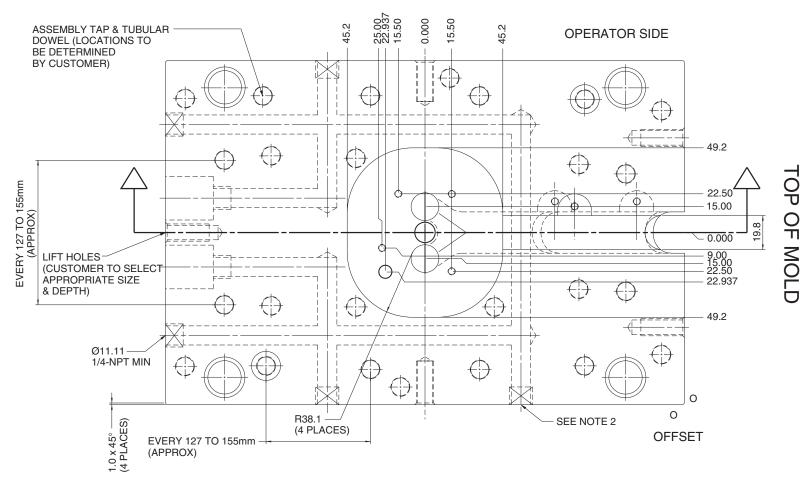
- 1. Calculate expansion
- 2. Calculate "C"
- 3. Calculate plate thickness
- 4. Calculate upper support ring gap

The calculations may need to be repeated in order to maintain the nozzle plate thickness requirement.

NOTE: Start with the smallest "A" dimension and increase "A" dimension as needed. This approach will generate a design with the minimum stack height.

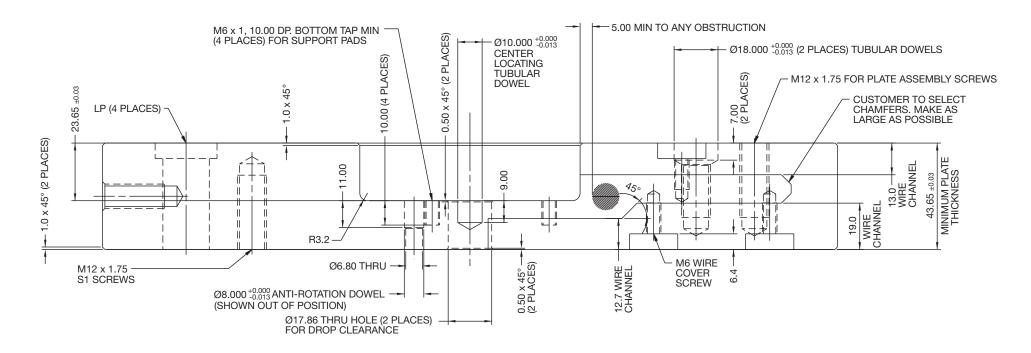
Design Suggestions

The most difficult area of design will be the layout of the wire channels in the nozzle plate. Please evaluate the wire channel depth and path carefully. Three possible scenarios (1 = simplest; 2 = more difficult; 3 = most difficult):


- 1. If the nozzle plate thickness is >54.65 with a 40.00 thick manifold [59.65 with a 45.00 and 64.65 with a 50.00 thick manifold), the wire channel will be 19.0 deep throughout its path.
- 2. If the nozzle plate thickness is 49.00 to 54.65 with a 40.00 thick manifold [54.00 to 59.65 with a 45.00 and 59.00 to 64.65 with a 50.00 thick manifold], the wire channel will be 19.0 deep throughout its path, but the wire channel cannot cross under the support pad taps because the screws will protrude into the wire channel.
- 3. If the nozzle plate thickness is 43.65 to <49.00 with a 40.00 thick manifold [48.65 to <54.00 with a 45.00 thick and 53.65 to <59.00 with a 50 thick manifold], the wire channel will be 12.7 deep underneath the manifold clearance pocket. The wire channel can be 19.0 deep only outside of the pocket. Also, the wire channel cannot cross under the support pad taps because the screws will protrude into the wire channel.

In order to avoid scenarios 2 and 3, choose the next longer "A" dimension, which will increase the stack height by approximately 20.00mm.

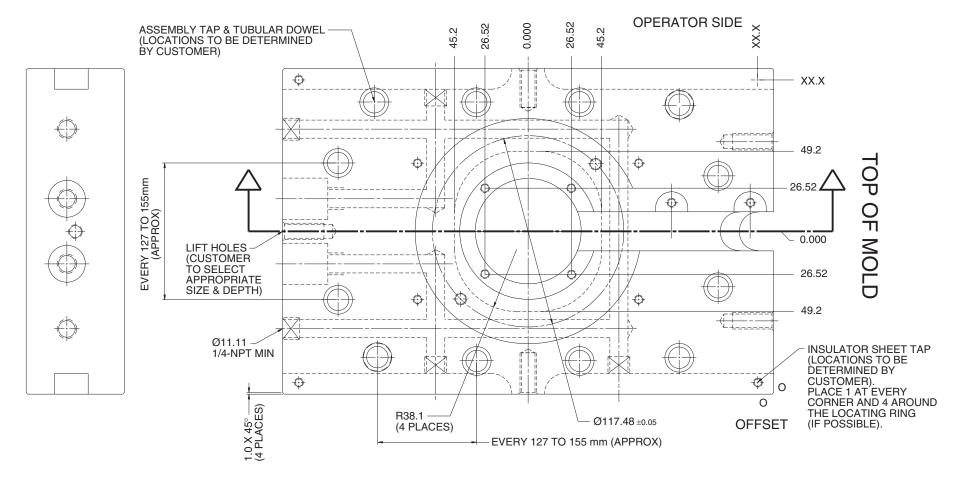
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (30 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 200mm x 302mm mold shown.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

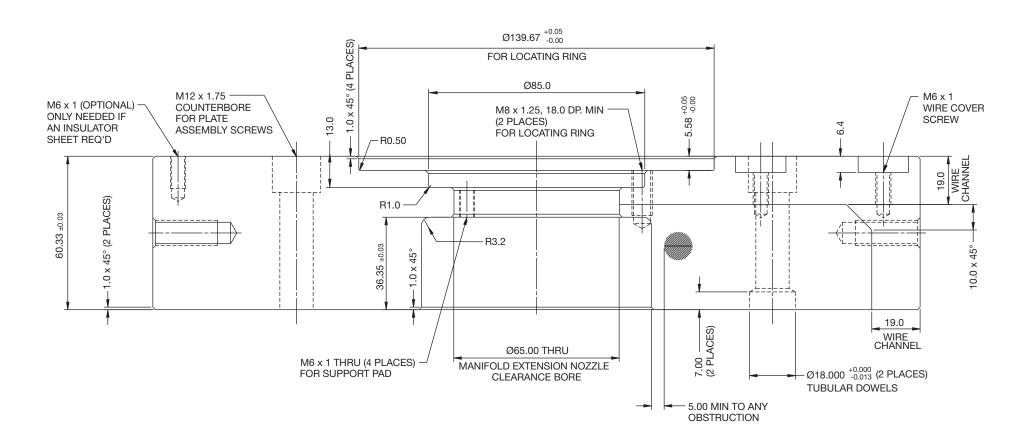
2-Drop (30 Pitch) - Nozzle Plate Machining Detail (continued)


NOTES:

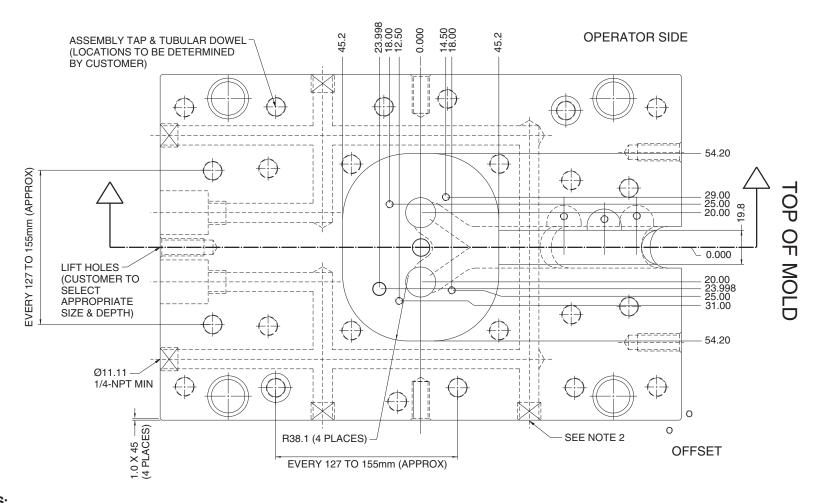
- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC3002 manifold heater channel machining drawing on page 61 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For inch dimensions, see pages 74-137.

www.dme.net

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

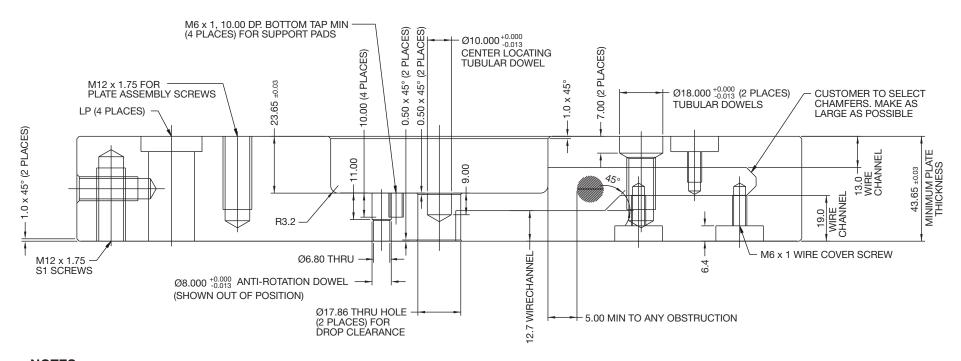

2-Drop (30 Pitch) - Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 200mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

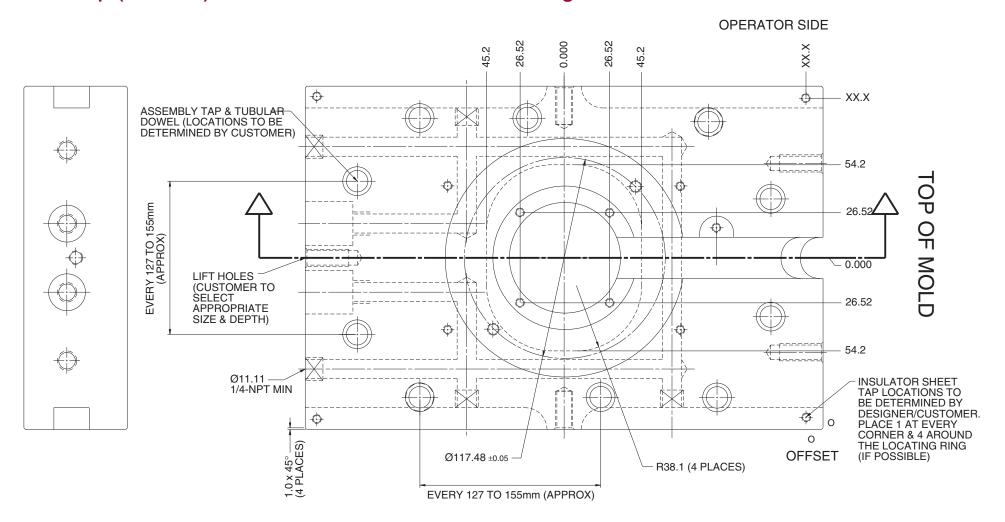
2-Drop (30 Pitch) - Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (40 Pitch) - Nozzle Plate Machining Detail

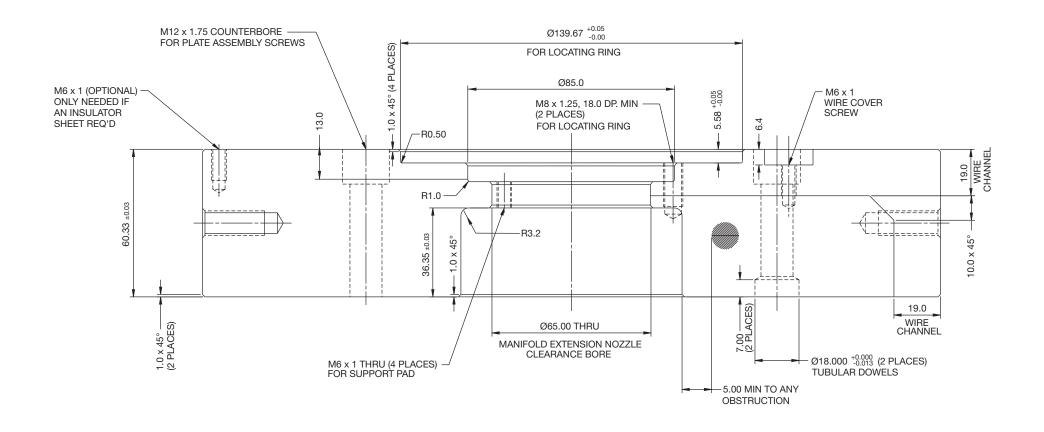
- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 200mm x 302mm mold shown.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

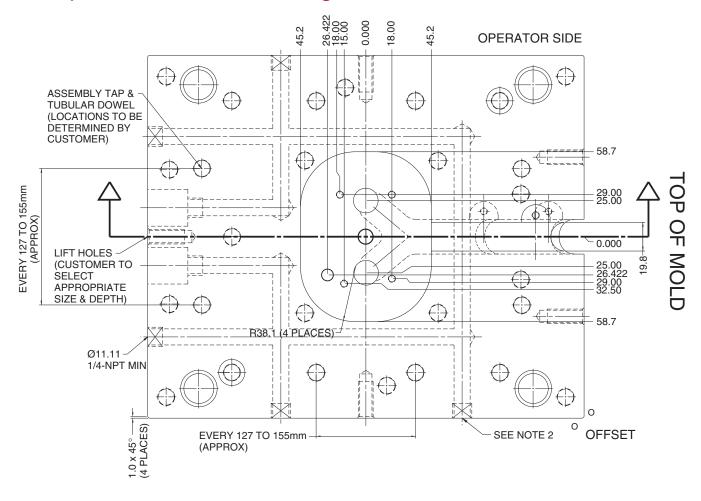

2-Drop (40 Pitch) - Nozzle Plate Machining Detail (continued)

- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC4002 manifold heater channel machining drawing on page 62 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

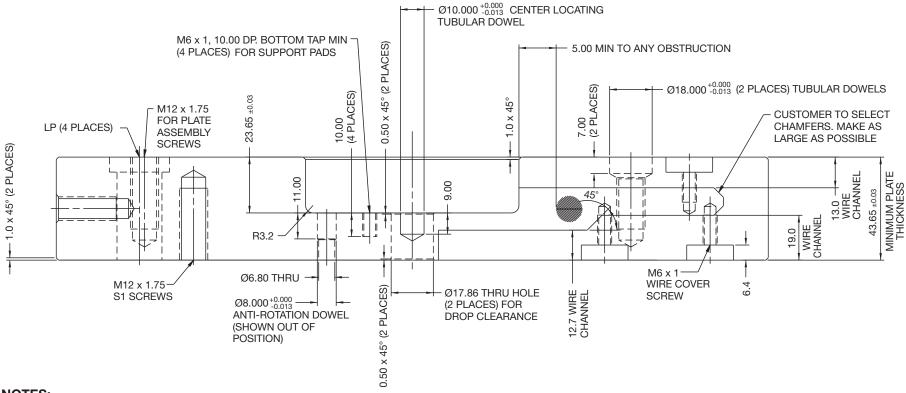

2-Drop (40 Pitch) - Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 200mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (40 Pitch) - Manifold Retainer Plate Machining Detail (continued)

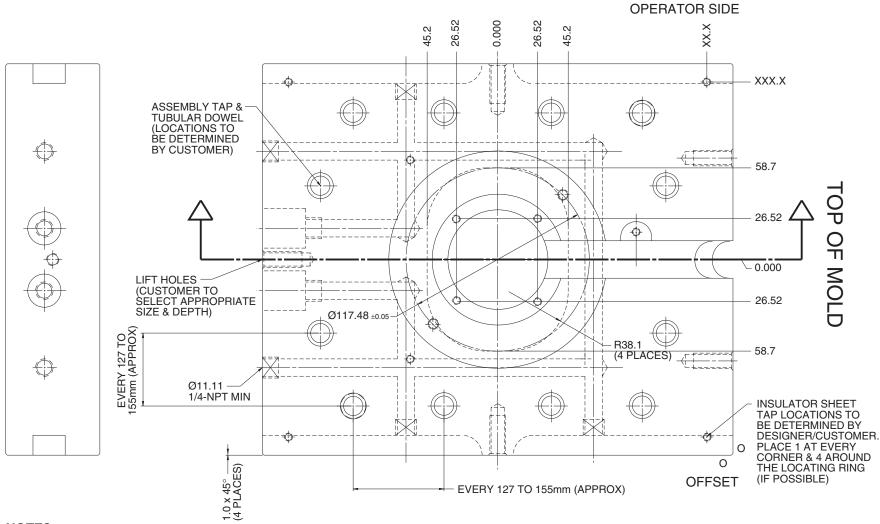
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (50 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 200mm x 302mm mold shown.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (50 Pitch) - Nozzle Plate Machining Detail (continued)

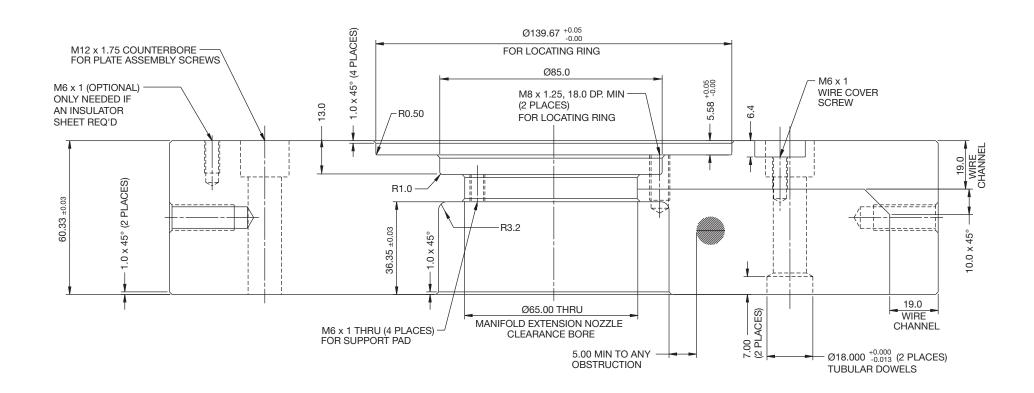

NOTES:

- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC5002 manifold heater channel machining drawing on page 63 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For inch dimensions, see pages 74-137.

www.dme.net

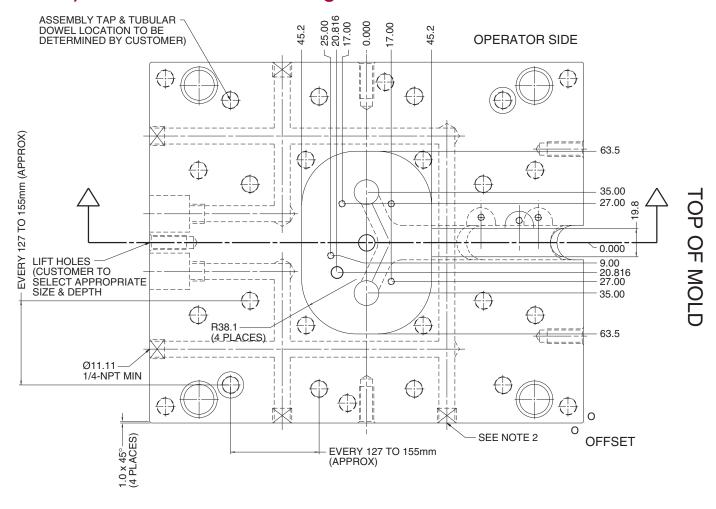
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (50 Pitch) - Manifold Retainer Plate Machining Detail


NOTES:

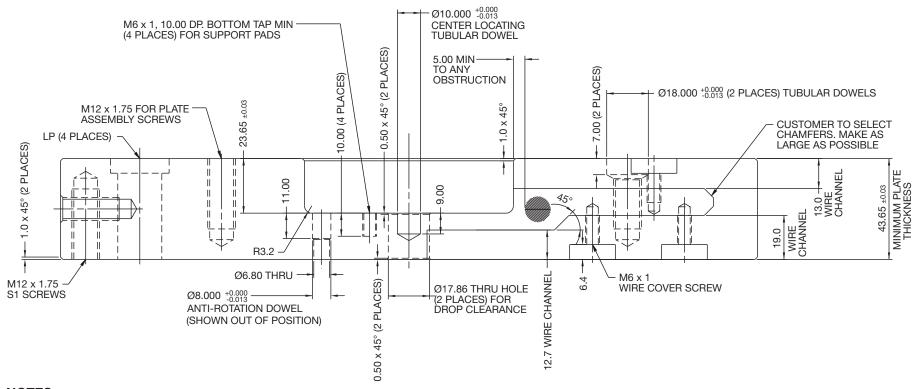
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 200mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (50 Pitch) - Manifold Retainer Plate Machining Detail (continued)

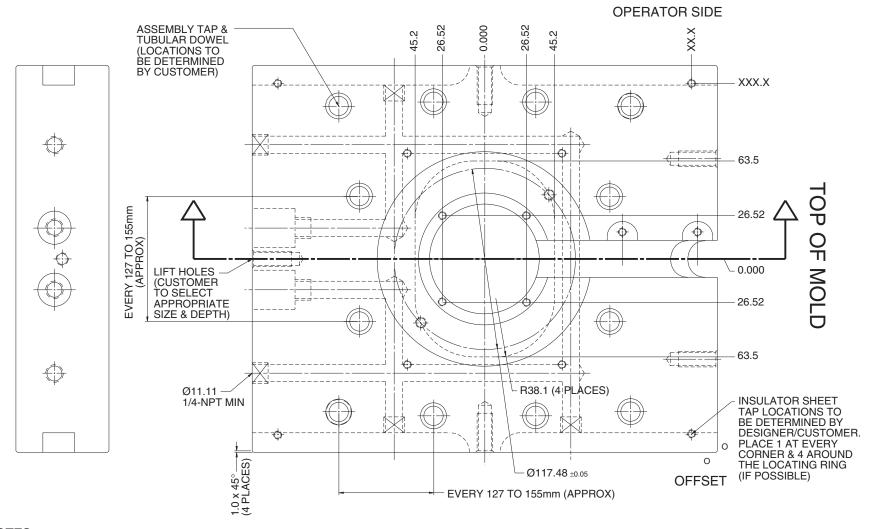
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (70 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 200mm x 302mm mold shown.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

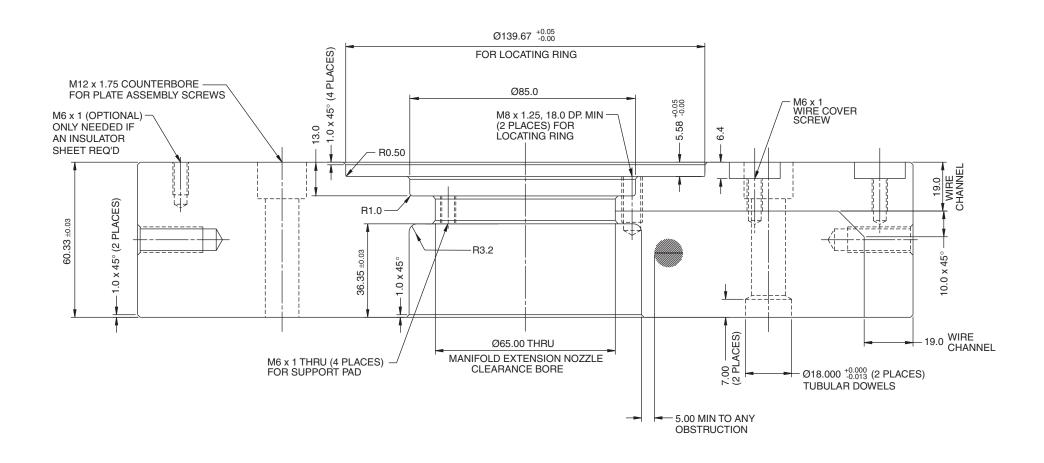
2-Drop (70 Pitch) - Nozzle Plate Machining Detail (continued)


NOTES:

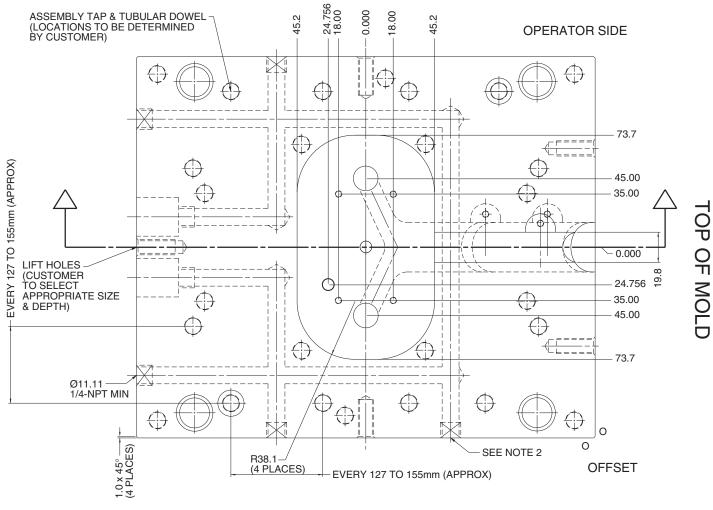
- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC7002 manifold heater channel machining drawing on page 64 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For inch dimensions, see pages 74-137.

www.dme.net

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

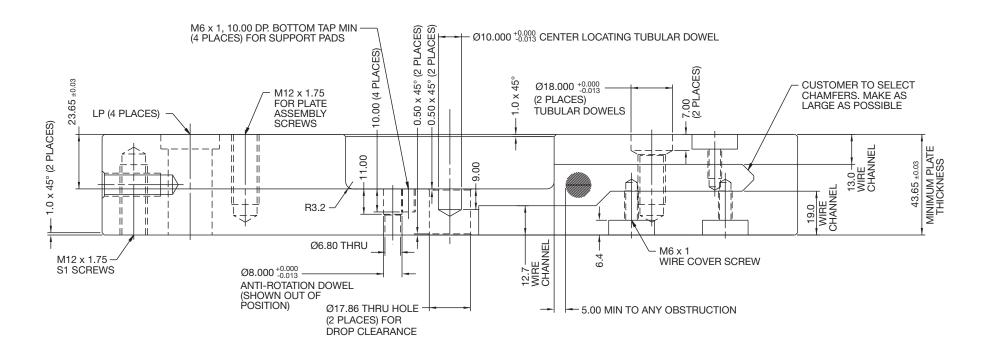

2-Drop (70 Pitch) - Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 200mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (70 Pitch) - Manifold Retainer Plate Machining Detail (continued)

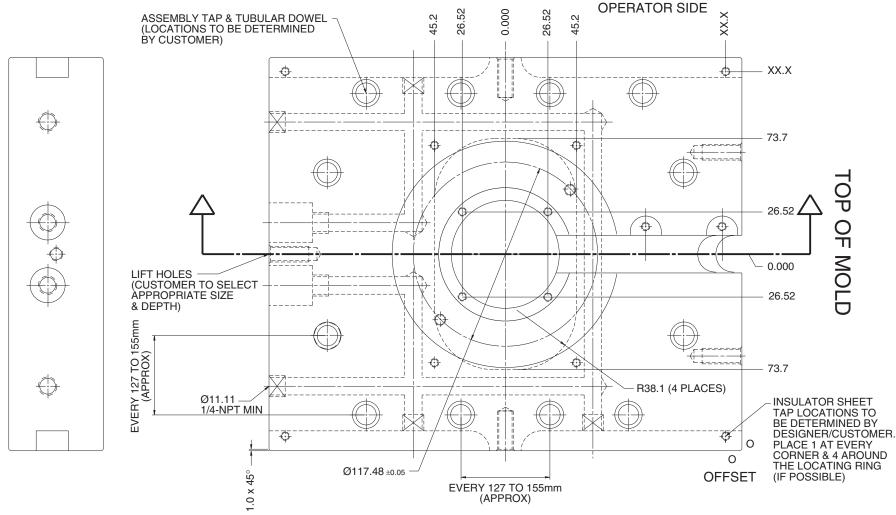
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (90 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 200mm x 302mm mold shown.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

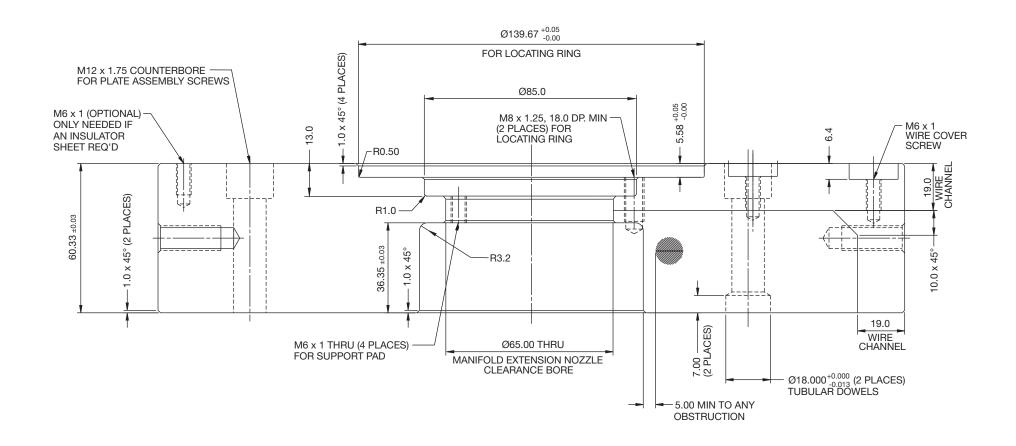
2-Drop (90 Pitch) - Nozzle Plate Machining Detail (continued)


NOTES:

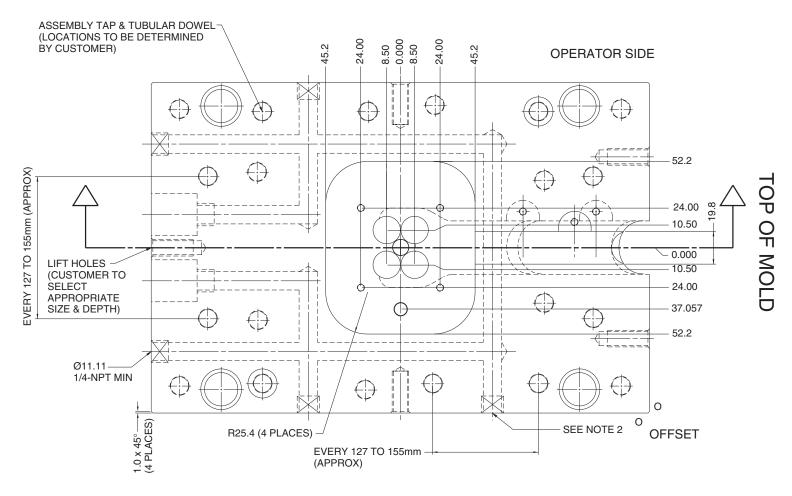
- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket.
 - CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC9002 manifold heater channel machining drawing on page 65 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For inch dimensions, see pages 74-137.

www.dme.net

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

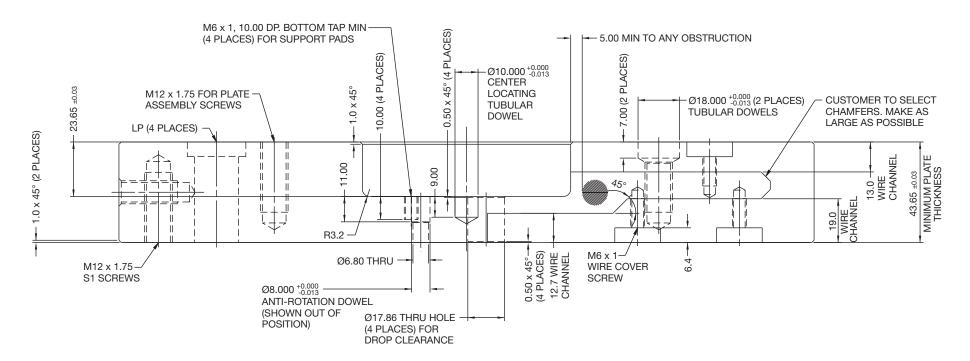

2-Drop (90 Pitch) - Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 200mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (90 Pitch) - Manifold Retainer Plate Machining Detail (continued)

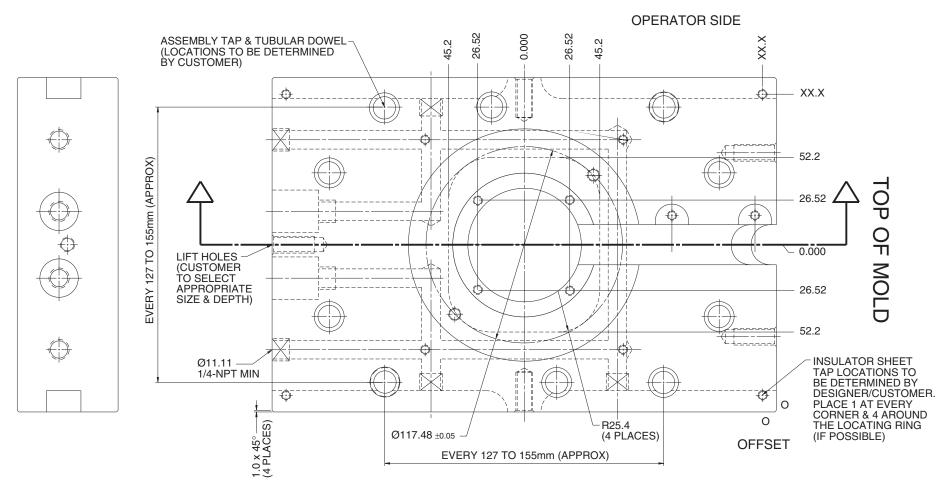
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


4 Drop (17x21 Pitch) — Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 200mm x 302mm mold shown.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

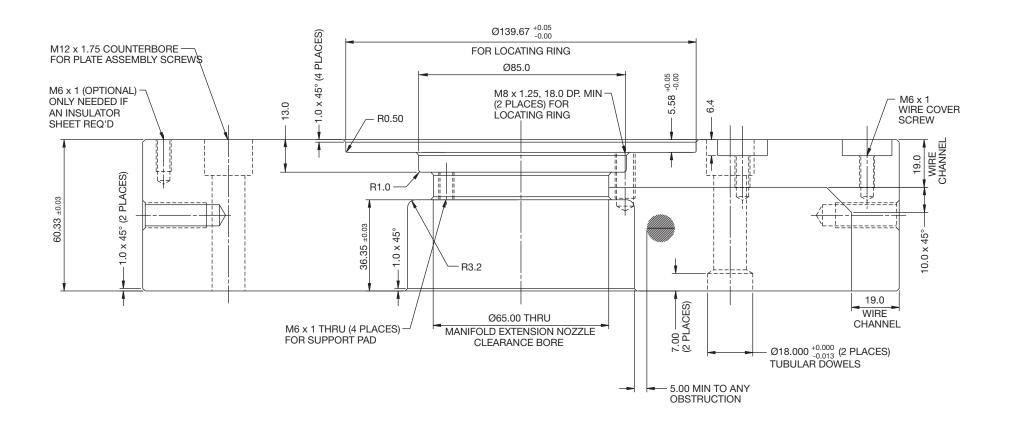
4 Drop (17x21 Pitch) — Nozzle Plate Machining Detail (continued)


NOTES:

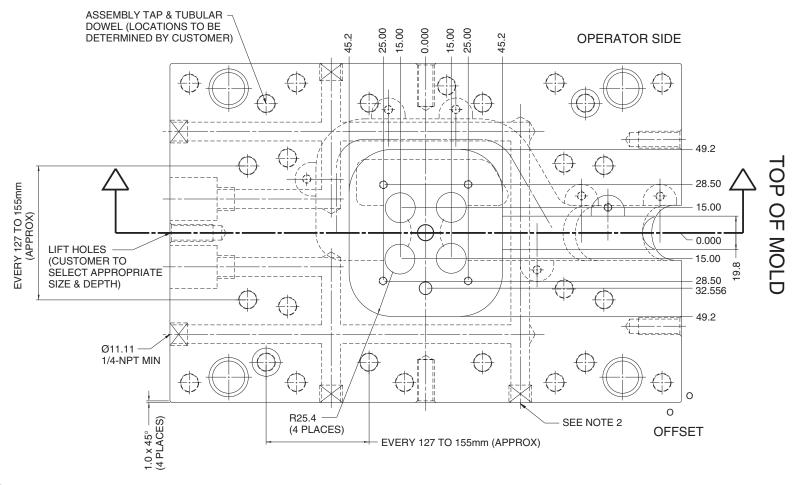
- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC0004 manifold heater channel machining drawing on page 66 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For inch dimensions, see pages 74-137.

www.dme.net

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

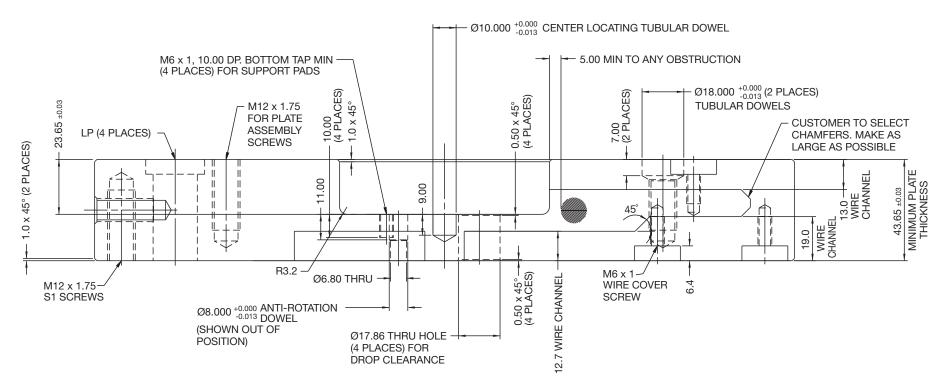

4 Drop (17x21 Pitch) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 200mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

4 Drop (17x21 Pitch) — Manifold Retainer Plate Machining Detail (continued)

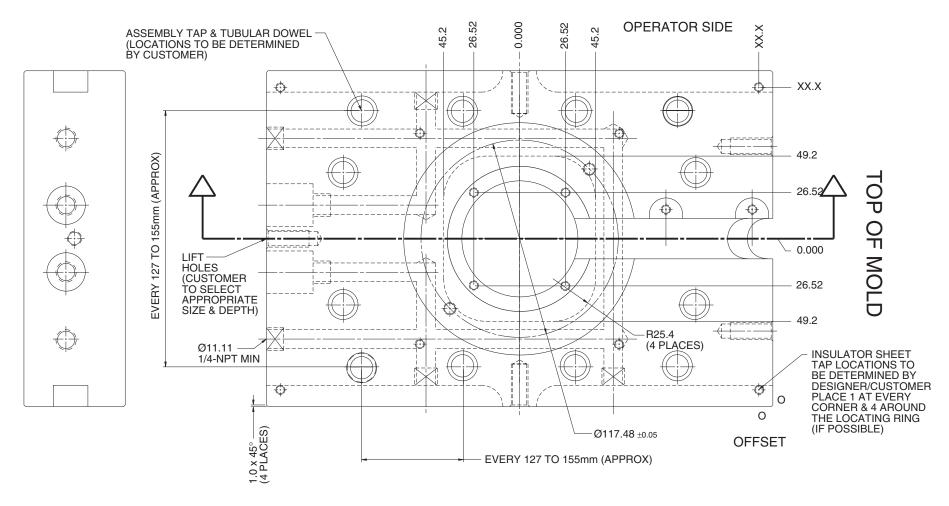
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


4 Drop (30x30 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 200mm x 302mm mold shown.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

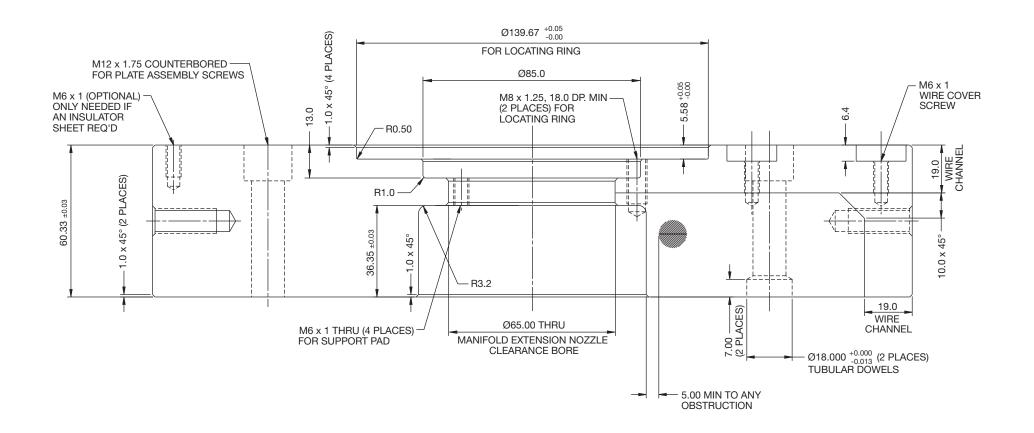
4 Drop (30x30 Pitch) — Nozzle Plate Machining Detail (continued)



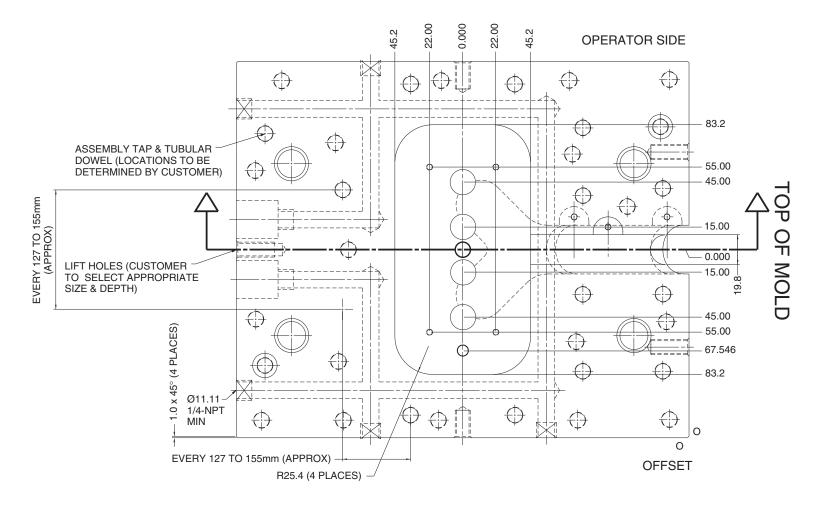
NOTES:

- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 43.65 and 46.81, water line between heater channels must be made smaller to ensure 5.00 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC3304 manifold heater channel machining drawing on page 67 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

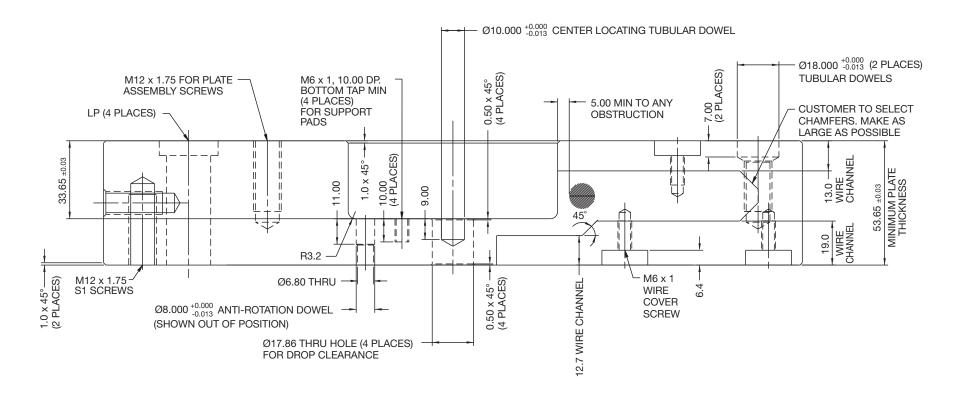

4 Drop (30x30 Pitch) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 200mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

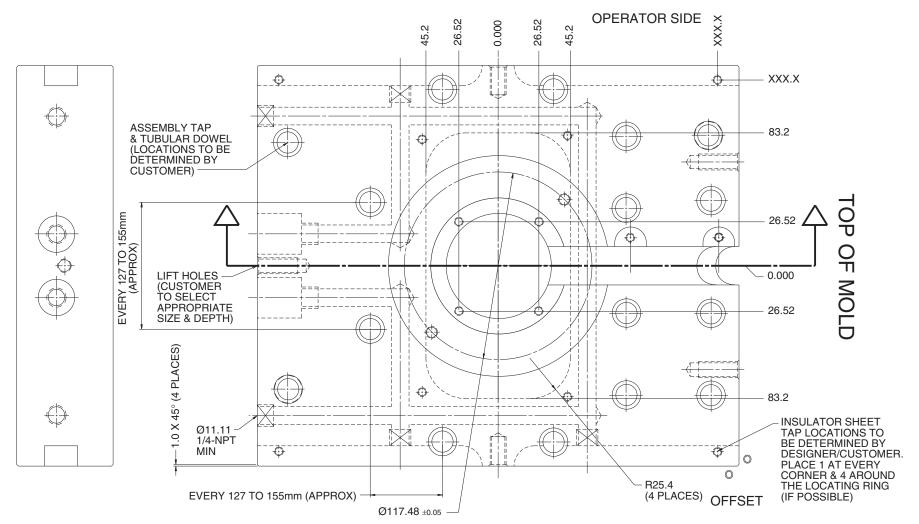
4 Drop (30x30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


4 Drop (30 Pitch In-Line) — Nozzle Plate Machining Detail

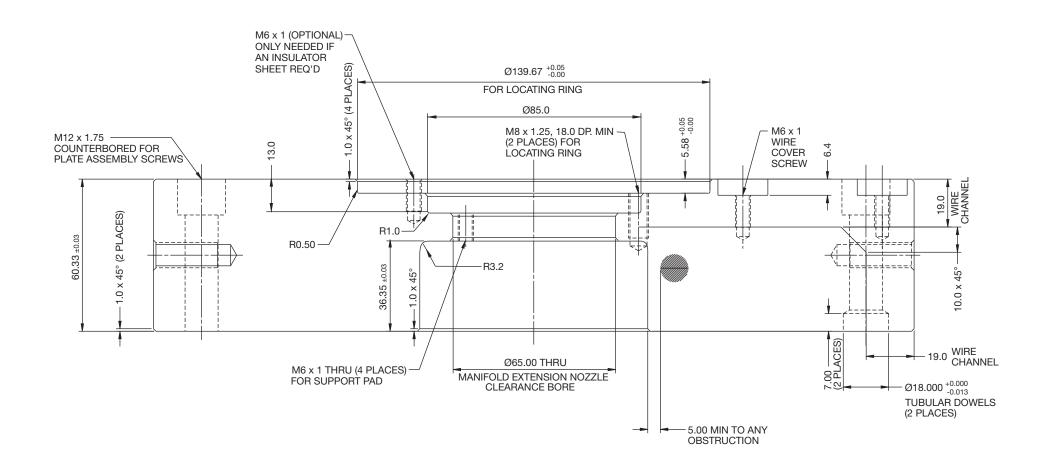
- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

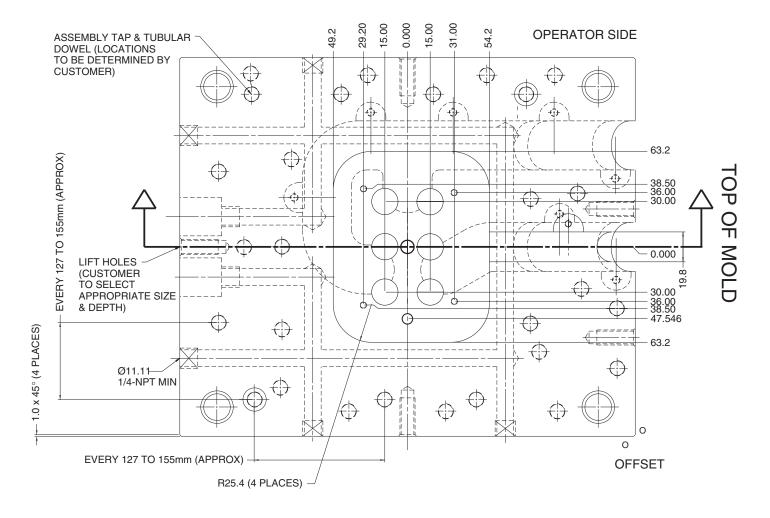

4 Drop (30 Pitch In-Line) — Nozzle Plate Machining Detail (continued)

- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3004 manifold heater channel machining drawing on page 68 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

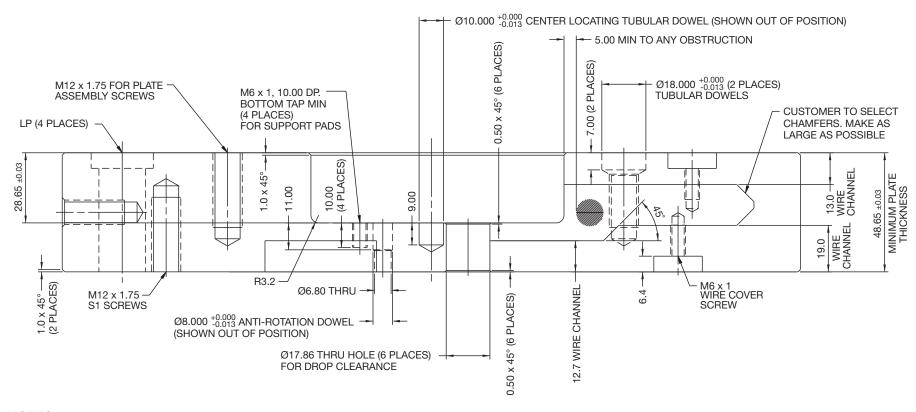

4 Drop (30 Pitch In-Line) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

4 Drop (30 Pitch In-Line) — Manifold Retainer Plate Machining Detail (continued)

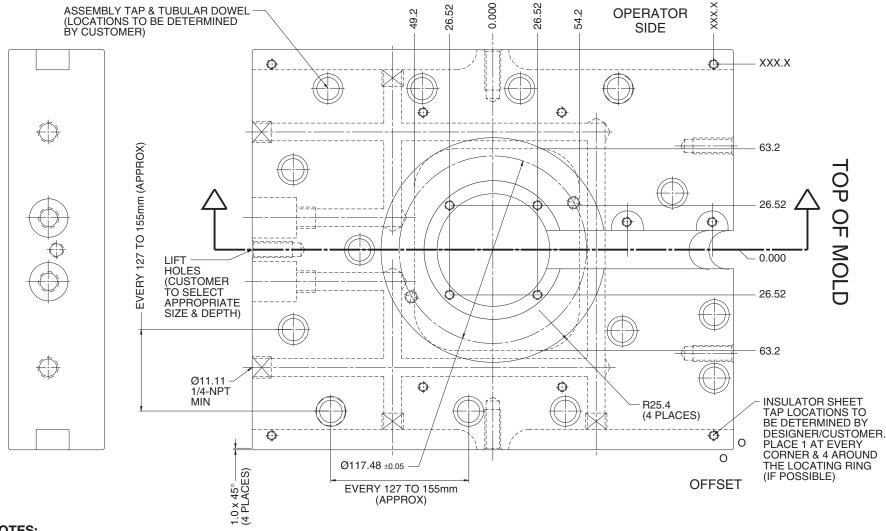
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


6 Drop (30 Pitch) — Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

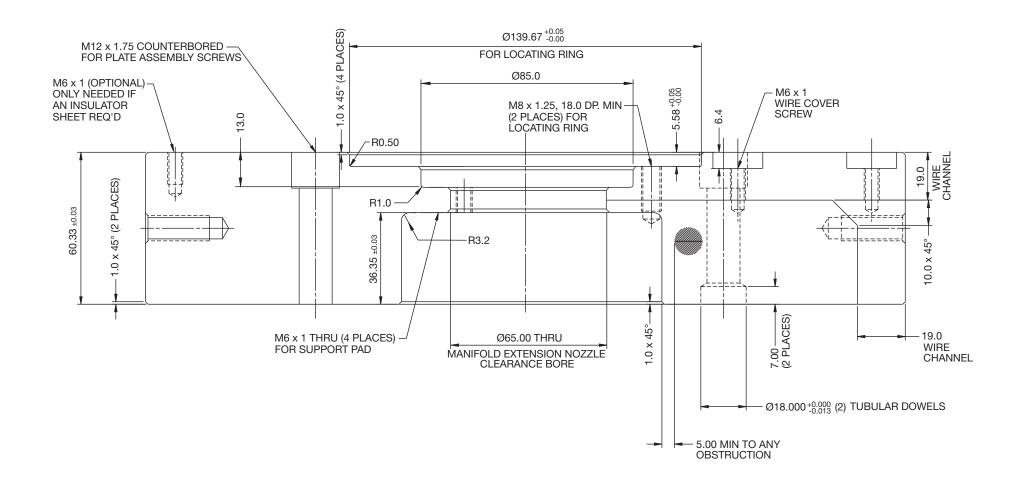
6 Drop (30 Pitch) — Nozzle Plate Machining Detail (continued)



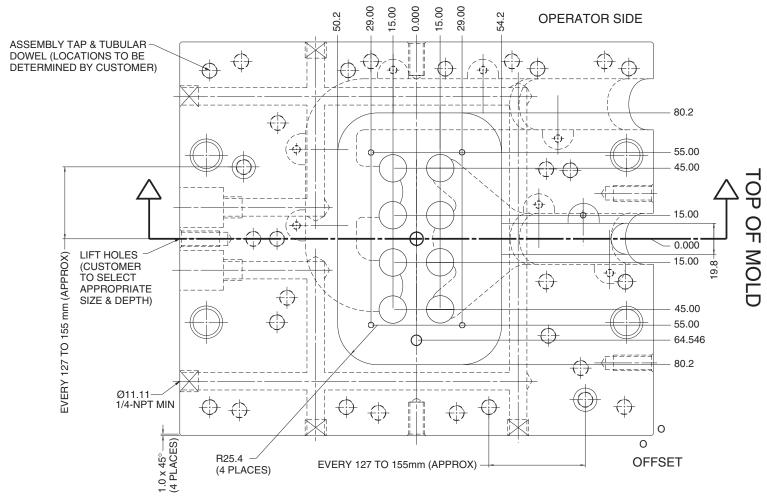
NOTES:

- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3306 manifold heater channel machining drawing on page 69 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

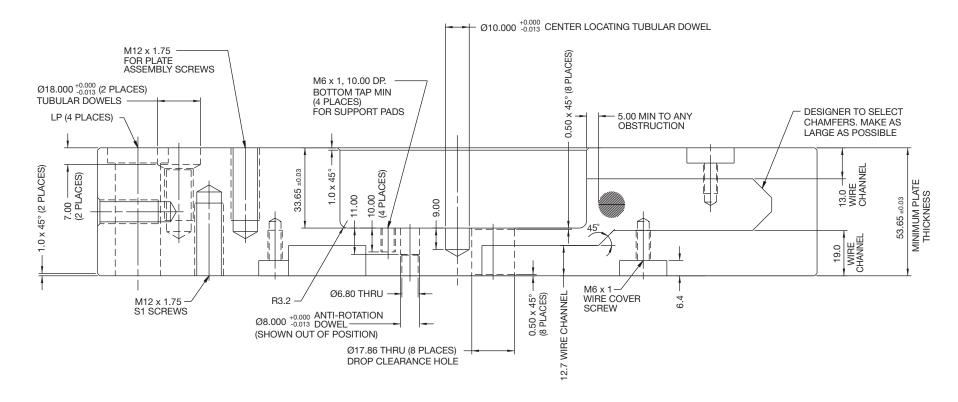

6 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

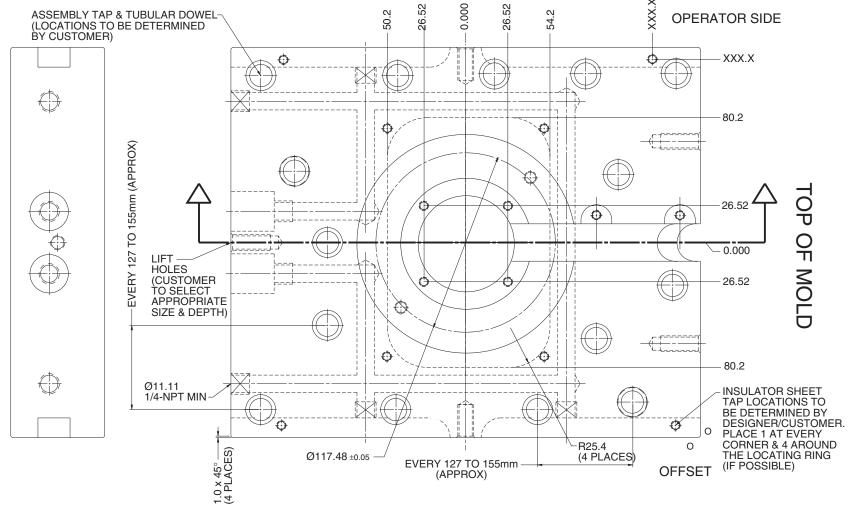
6 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


8 Drop (30 Pitch) — Nozzle Plate Machining Detail

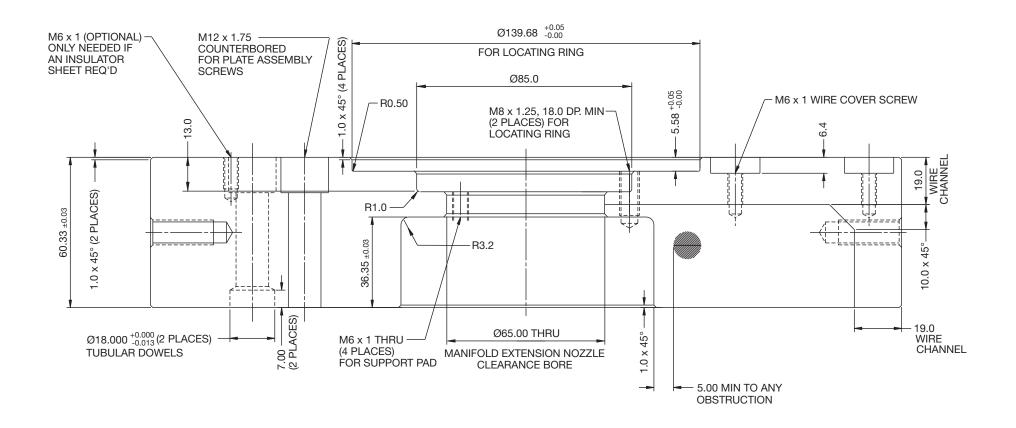
- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

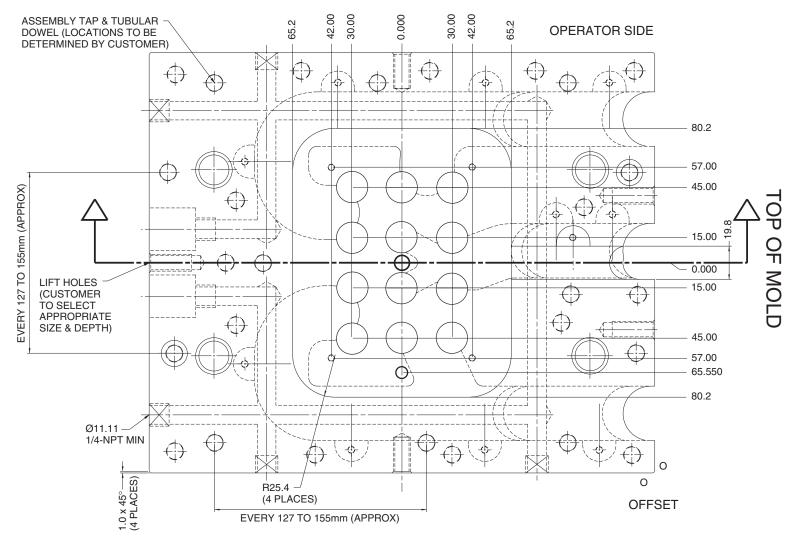

8 Drop (30 Pitch) — Nozzle Plate Machining Detail (continued)

- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3308 manifold heater channel machining drawing on page 70 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


8 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail

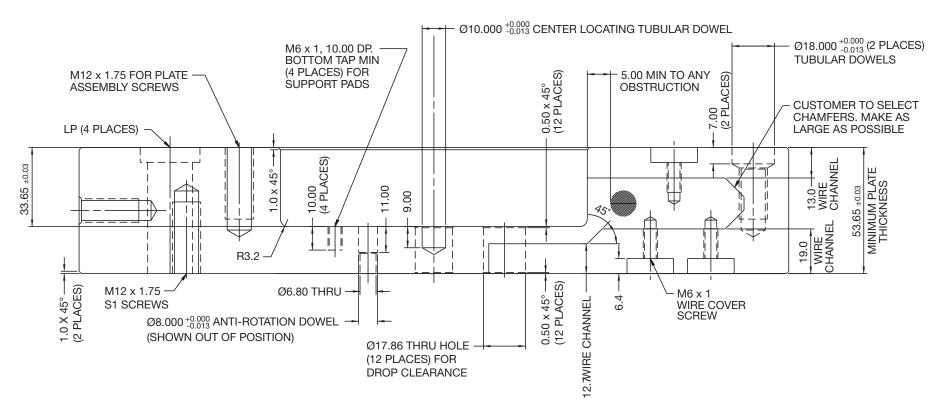
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

8 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

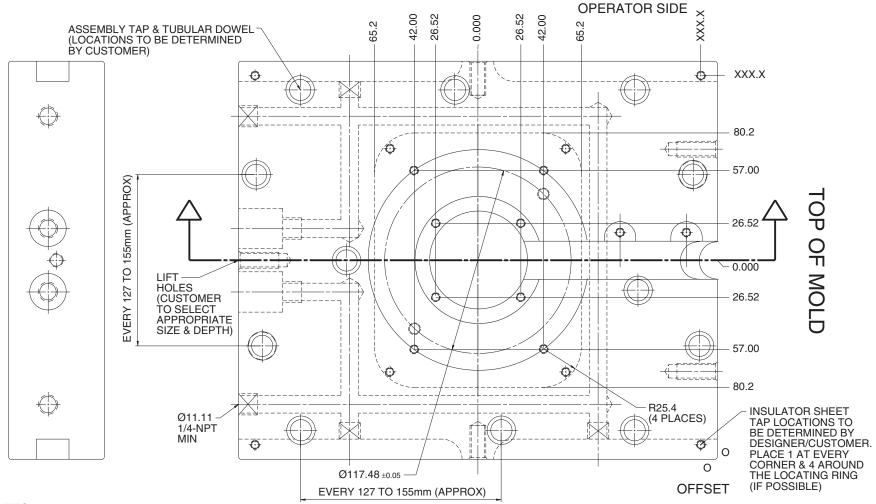
12 Drop (30 Pitch) — Nozzle Plate Machining Detail


NOTES:

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.

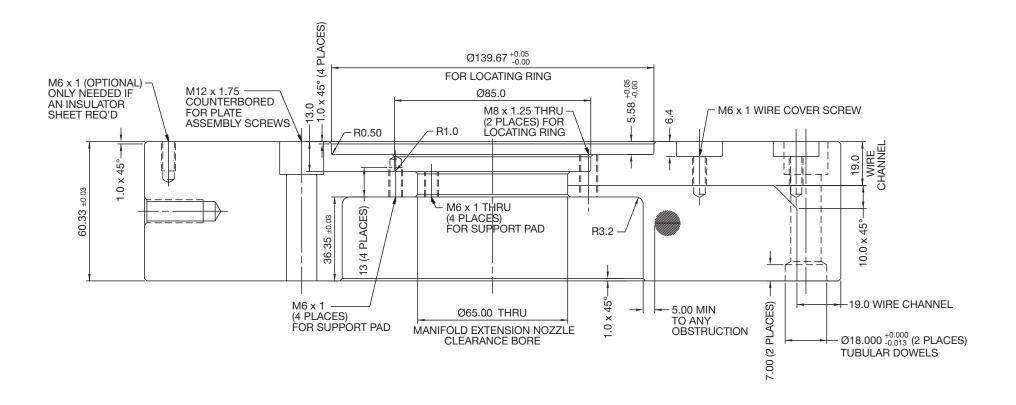
Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

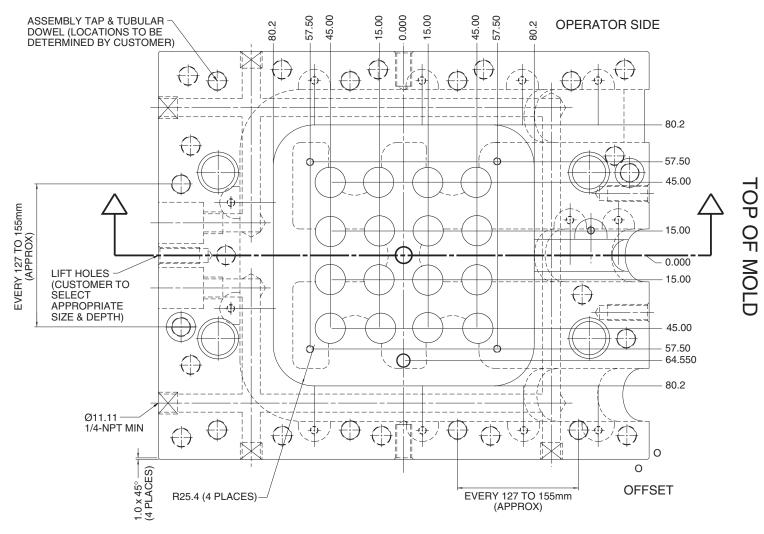

12 Drop (30 Pitch) — Nozzle Plate Machining Detail (continued)

- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3312 manifold heater channel machining drawing on page 71 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

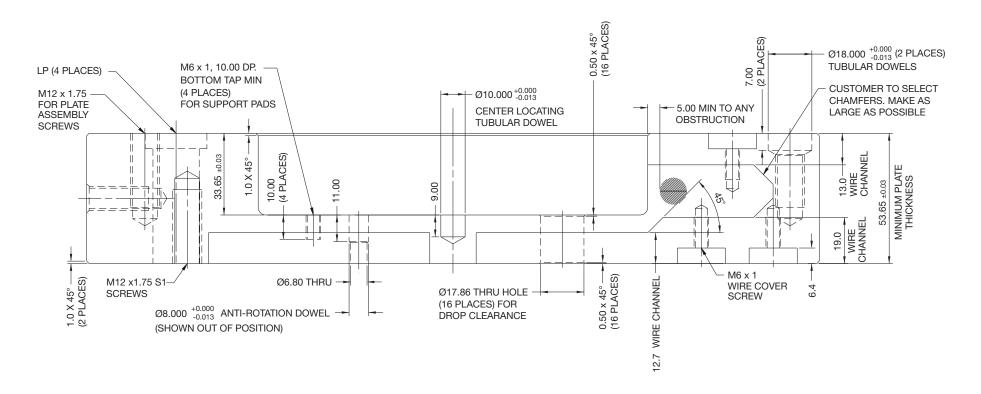

12 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

12 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

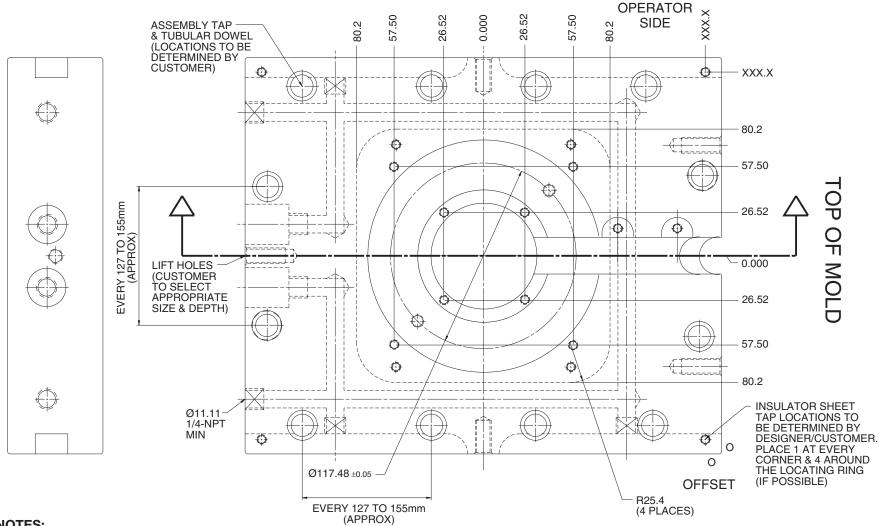
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


16 Drop (30 Pitch) — Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

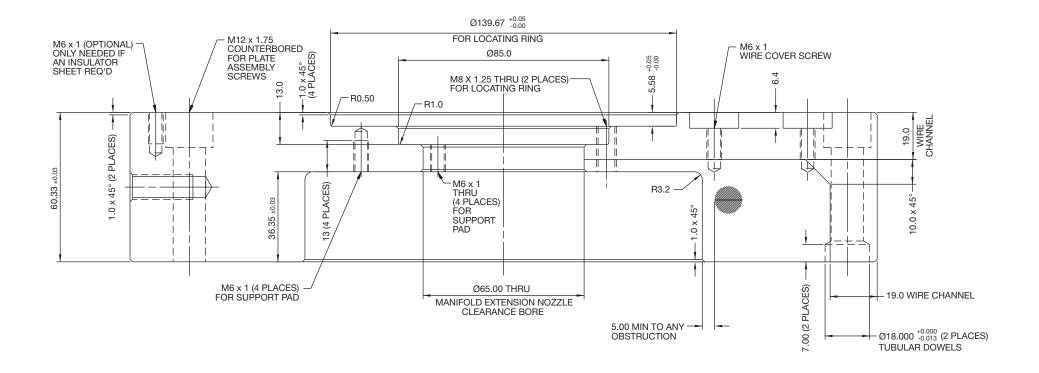
16 Drop (30 Pitch) — Nozzle Plate Machining Detail (continued)



NOTES:

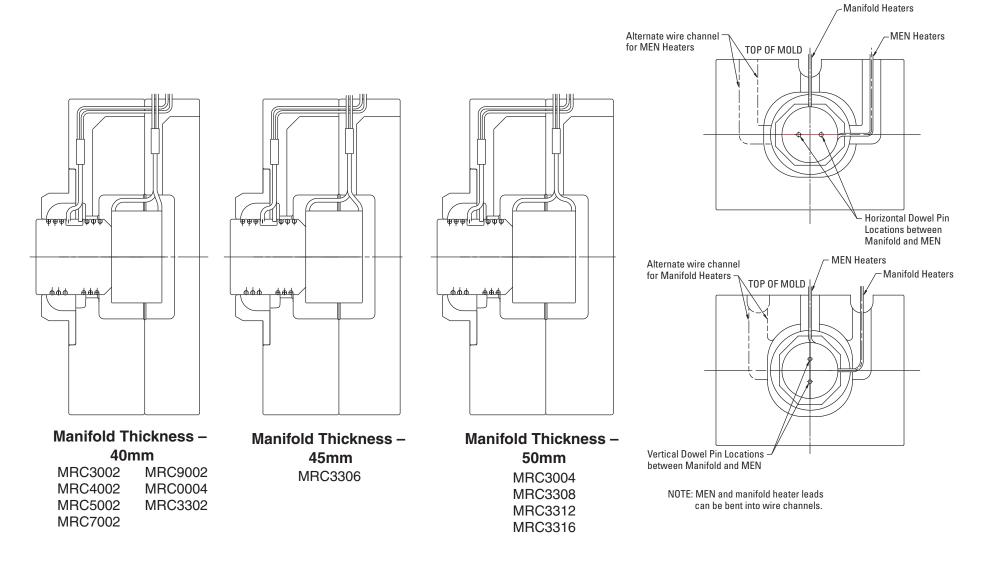
- 1. Wire channel depth to be 19.0 deep except when plate thickness does not provide 6.35mm steel support underneath pocket. In that case, wire channel depth to be 12.7 deep, under the pocket and then chamfered (45°) to 19.0 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3316 manifold heater channel machining drawing on page 72 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

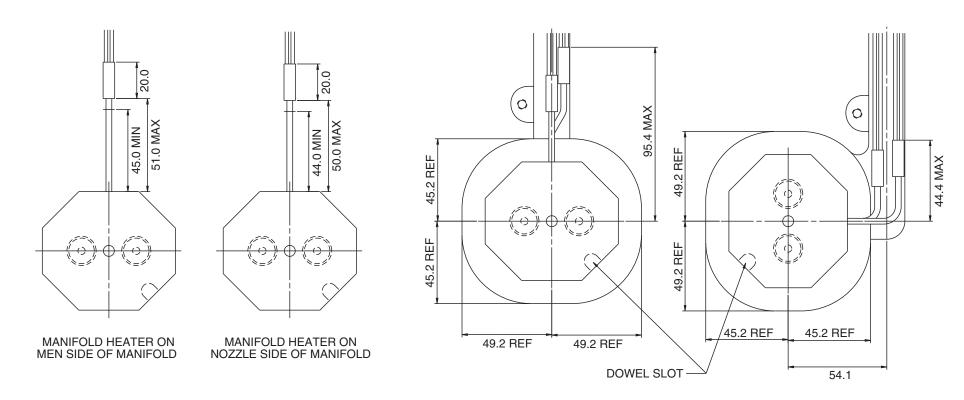

16 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 251mm x 302mm mold shown.
- 2. For inch dimensions, see pages 74-137.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

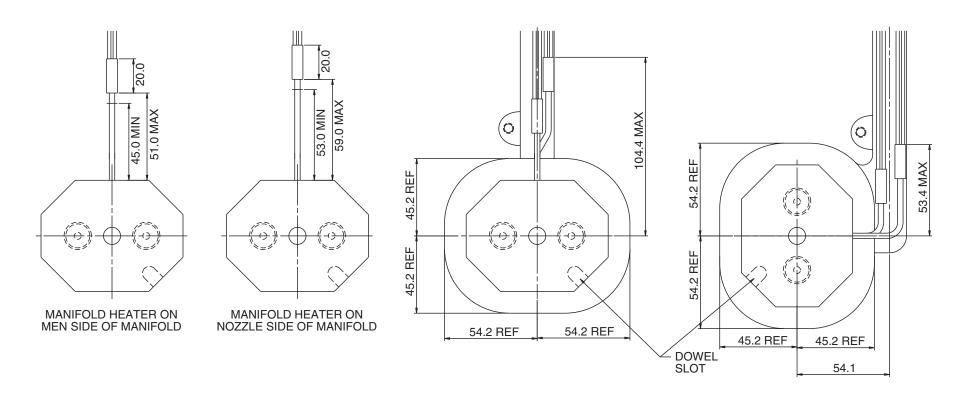

16 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


Rectangular Multi-Nozzle Assemblies – Manifold Heater Layout

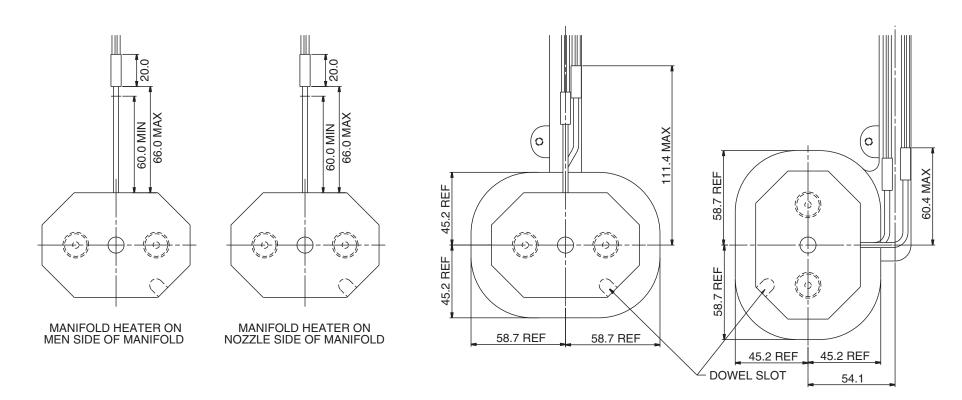
MEN Heater Wire Channels

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3002

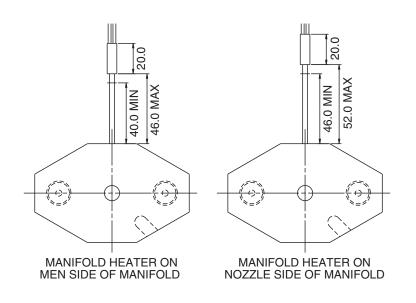
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

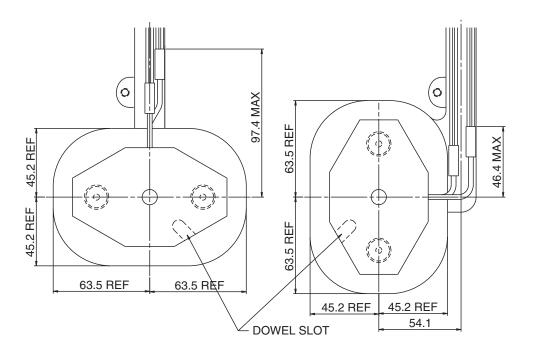
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC4002

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

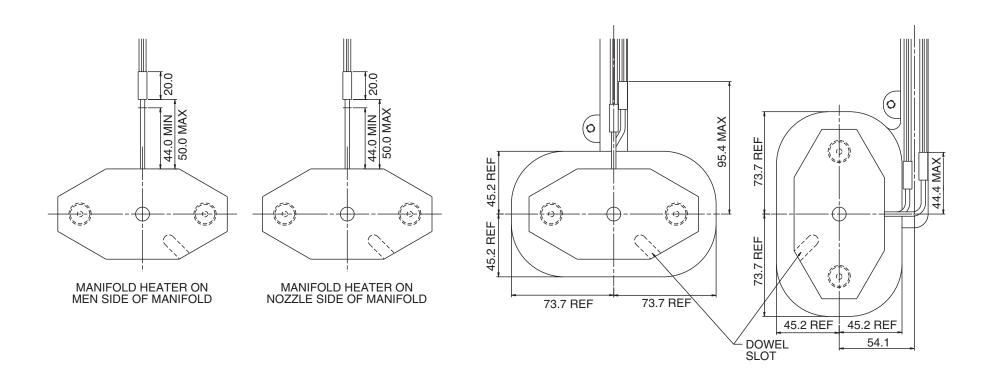

MRC5002



Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

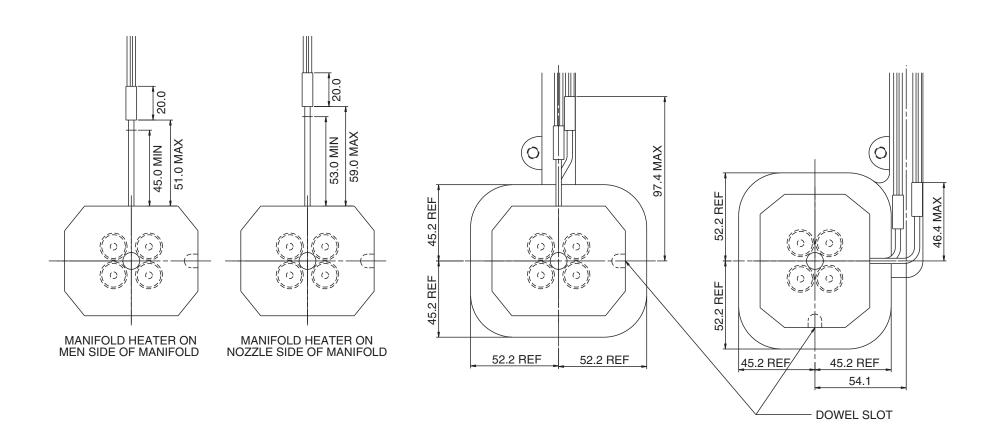
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

MRC7002



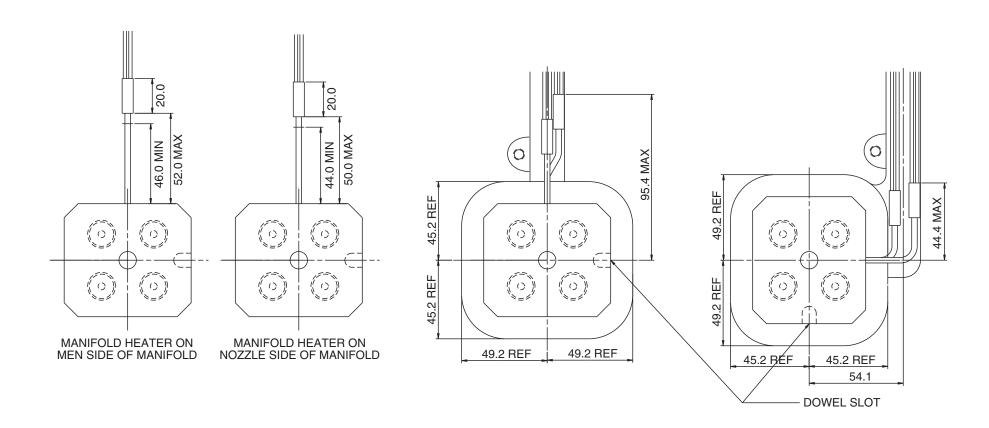
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC9002

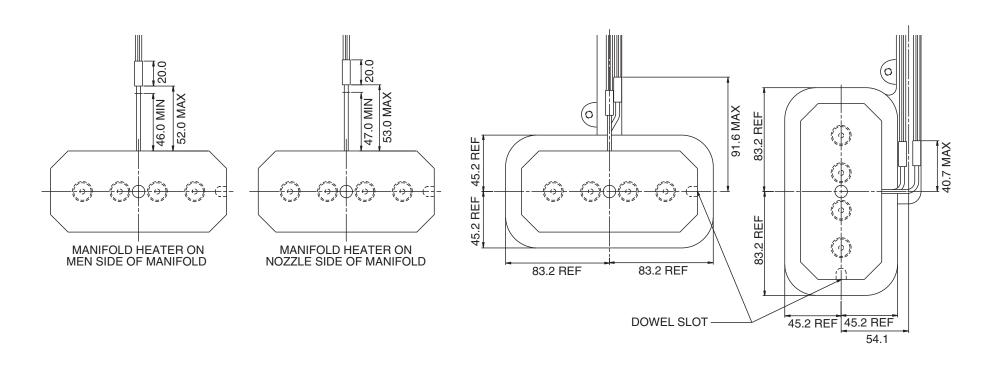
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC0004

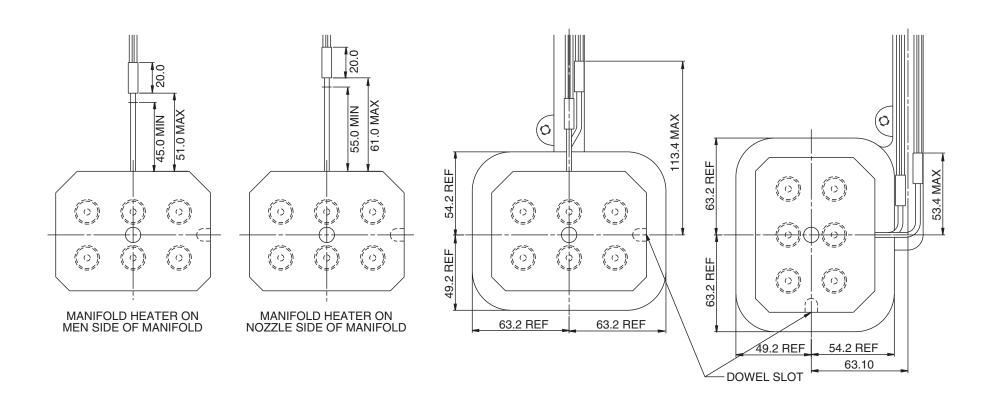
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3304

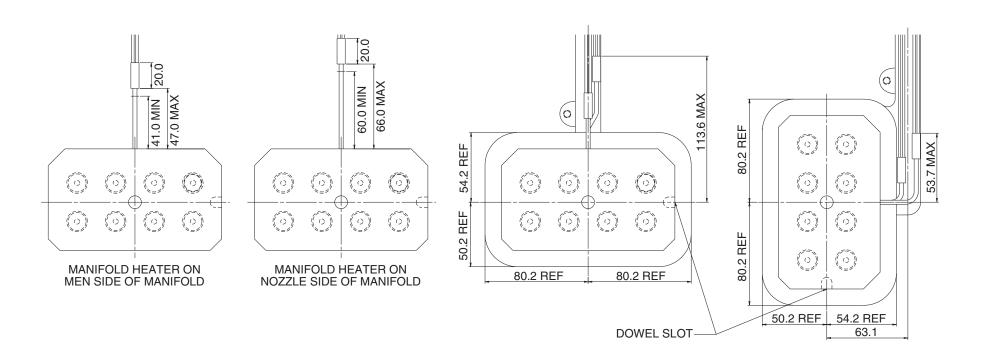
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3004

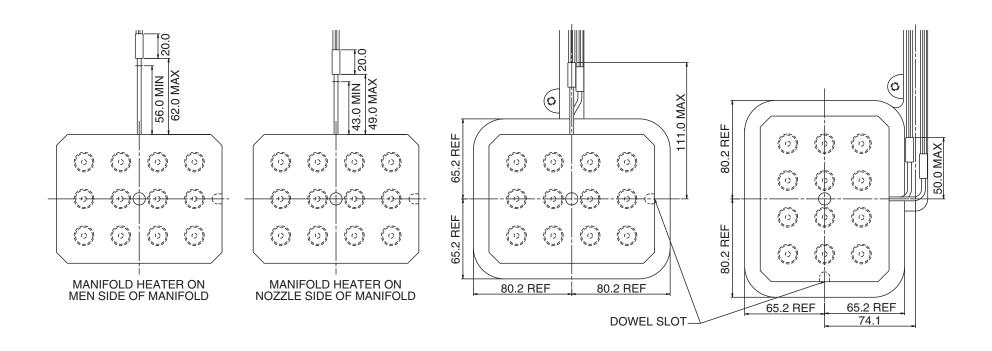
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3306

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

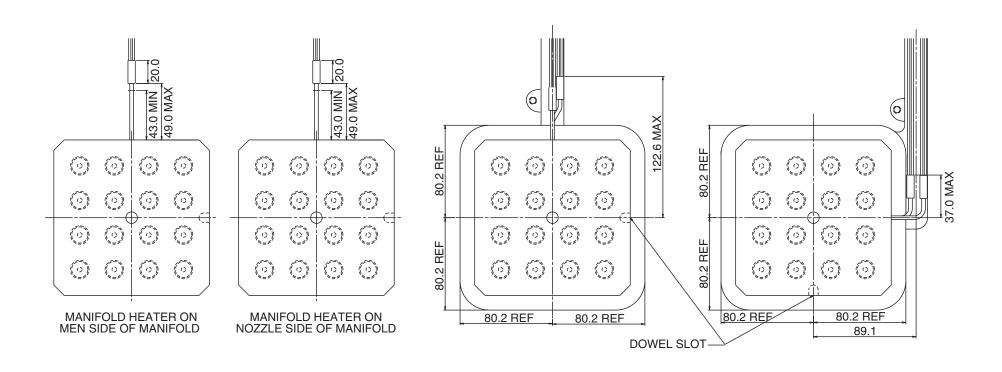
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3308

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

MRC3312

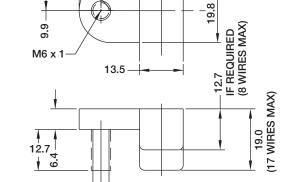

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Metric Dimensions

SECTION 1

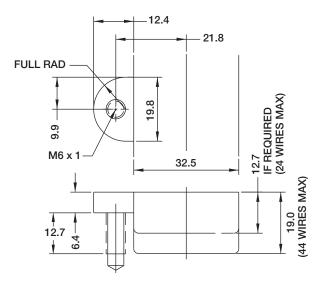
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

MRC3316

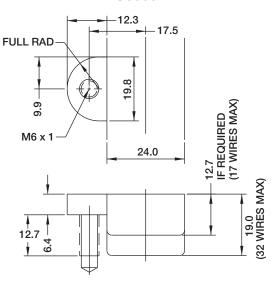


Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


Wire Cover Pocket Machining Details

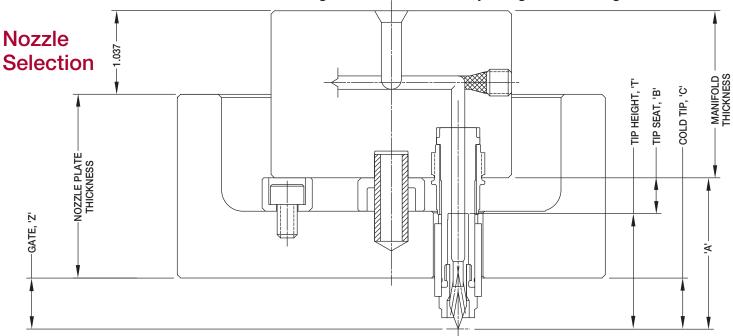
18.7 FULL RAD FU



15.7 12.7 IF REQUIRED (12 WIRES MAX) 19.0 (12 WIRES MAX)

WC0002

WC0003


www.dme.net

- 1. Use M6 x 12mm long BHCS and torque to 16 N.m (11.7 ft-lbs) for each wire cover.
- To facilitate assembly use 75% of the maximum number of wires. Nozzle heater = 2 wires; Manifold heaters = 4 wires (total); MEN heaters = 4 wires (total); Nozzle thermocouple = 1 wire; Manifold thermocouple = 1 wire; MEN thermocouple = 1 wire.
- 3. Radius all wire channels to suit.
- 4. For inch dimensions, see pages 74-137.

Inch Dimensions

SECTION 1

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Manifold Thickness

Configuration	Manifold Thickness
All 2-Drops, 4-Drop 17x21, 4-Drop 30x30	1.575
6-Drop	1.772
4-drop Inline, 8-, 12-, and 16-Drop	1.969

Tip Information for Gating Styles

1						
TIP Sub-Assembly Item No.	Gating Style	TIP CTE (10-6/degF)	"T" "T" = "A" - "B" (inch)	Applicable Stellar System		
SXG5110	Standard Point Gate Tip Sub-Assembly	9.72	1.3543	Standard		
SXG5020	High Performance Point Gate Tip Sub-Assembly 3.06		1.3543	High Performance		
SXG5201	High Performance Thru Hole Tip Sub-Assembly	3.06	1.3543	High Performance		
SXT1040	Sprue Gate	7.11	1.3543	Standard		

"A" and "B" Chart for Gating Styles

71 and B onarrior dating otylog					
Nozzle Sub- Assembly Item No.	Point Gate "A"	Sprue Gate "A"	"B"	Notes	
SXY0065 SXY0965	2.563	N/A	1.209	Standard coil heater; High performance heater	
SXY0085 SXY0985	3.350	N/A	1.996	Standard coil heater; High performance heater	
SXY0105 SXY0905	4.138	N/A	2.783	Standard coil heater; High performance heater	
SXY0125 SXY0925	4.925	N/A	3.570	Standard coil heater; High performance heater	
SXY0145 SXY0945	5.712	N/A	4.358	Standard coil heater; High performance heater	
SXY8065	N/A	2.563	1.209	Standard coil heater with snap ring	
SXY8085	N/A	3.350	1.996	Standard coil heater with snap ring	
SXY8105	N/A	4.138	2.783	Standard coil heater with snap ring	
SXY8125	N/A	4.925	3.570	Standard coil heater with snap ring	
SXY8145	N/A	5.712	4.358	Standard coil heater with snap ring	

NOTE: All units are in inches.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Inch Dimensions

SECTION 1

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Inch Calculations

Equations

1. "Z" = "C" + Expansion

NOTE: The minimum "Z" dimension is 0.512 for the point gate and sprue gate.

The maximum "Z" dimension is 4.528 for the point gate and sprue gate.

- 2. Nozzle Plate Thickness = (MT − 1.037) + "A" − "C," thickness ≥ 1.719, 1.915 or 2.112 (check nozzle plate machining detail).
- 3. Expansion = Delta T (°F) x [0.00000639 x (Manifold Thickness + "B") + CTE tip x "T"] 0.0035 + 0.00000639 x [Tmold(°F) 68]

NOTE: Valid for point gate tips. For sprue gate tips use the point gate nozzle plate thickness.

4. Upper Support Ring Gap = (Delta T (°F) x 0.00000639 x Manifold Thickness) – 0.0011811

Where: CTE tip is the coefficient of thermal expansion of the tip

Delta T(°F) = Tmelt - Tmold (expressed in °F)

Delta $T(^{\circ}F)$ = Delta $T(^{\circ}C)$ / 1.8

"Z," "C," "B," "T," Upper Support Ring Gap, Expansion and Nozzle Plate Thickness are all expressed in inches.

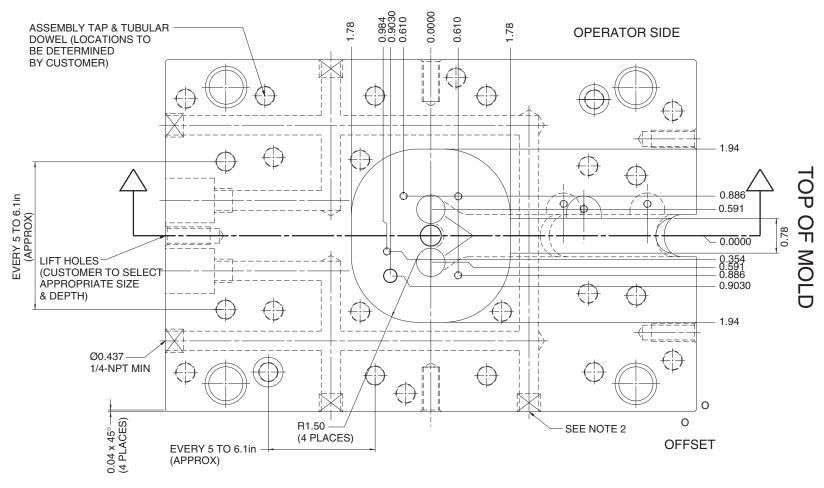
Procedure and Notes

- 1. Calculate expansion
- 2. Calculate "C"
- 3. Calculate plate thickness
- 4. Calculate upper support ring gap

The calculations may need to be repeated in order to maintain the nozzle plate thickness requirement.

NOTE: Start with the smallest "A" dimension and increase "A" dimension as needed. This approach will generate a design with the minimum stack height.

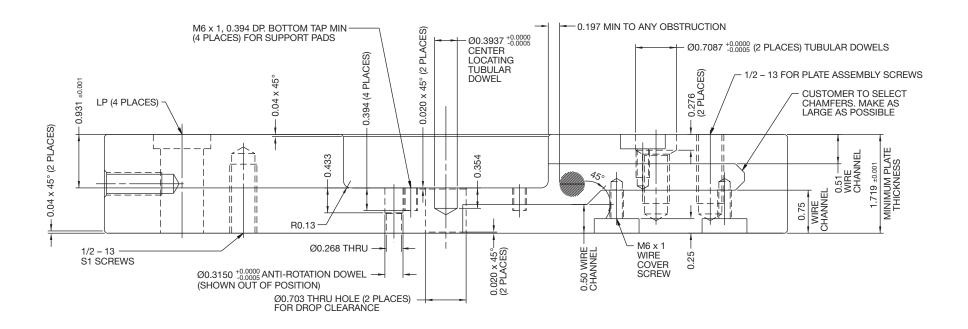
Design Suggestions


The most difficult area of design will be the layout of the wire channels in the nozzle plate. Please evaluate the wire channel depth and path carefully. Three possible scenarios (1 = simplest; 2 = more difficult; 3 = most difficult):

- 1. If the nozzle plate thickness is >2.152 with a 1.575 thick manifold [2.348 with a 1.772 and 2.545 with a 1.969 thick manifold], the wire channel will be 0.75 deep throughout its path.
- 2. If the nozzle plate thickness is 1.929 to 2.152 with a 1.575 thick manifold [2.126 to 2.348 with a 1.772 and 2.323 to 2.545 with a 1.969 thick manifold], the wire channel will be 0.75 deep throughout its path, but the wire channel cannot cross under the support pad taps because the screws will protrude into the wire channel.
- 3. If the nozzle plate thickness is 1.719 to <1.929 with a 1.575 thick manifold [1.915 to <2.126 with a 1.772 thick and 2.112 to <2.323 with a 1.969 thick manifold], the wire channel will be .50 deep underneath the manifold clearance pocket. The wire channel can be 0.75 deep only outside of the pocket. Also, the wire channel cannot cross under the support pad taps because the screws will protrude into the wire channel.

In order to avoid scenarios 2 and 3, choose the next longer "A" dimension, which will increase the stack height by approximately 0.787in.

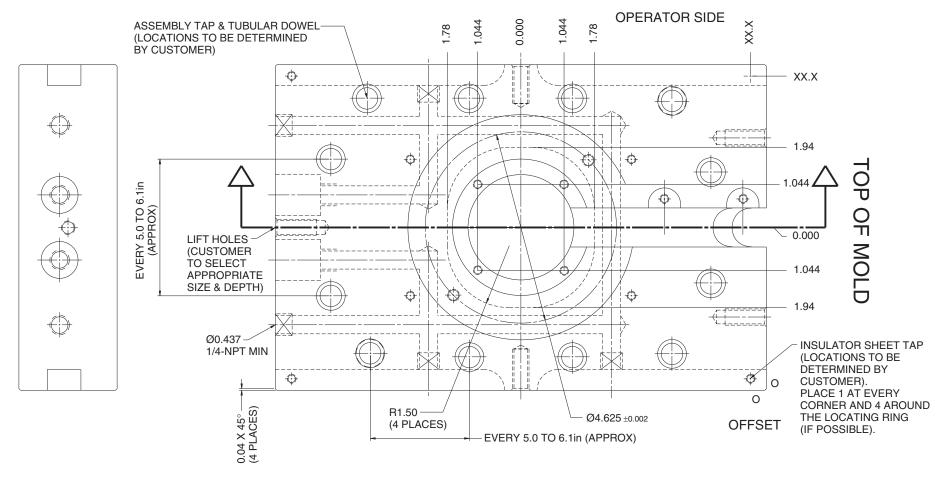
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (30 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

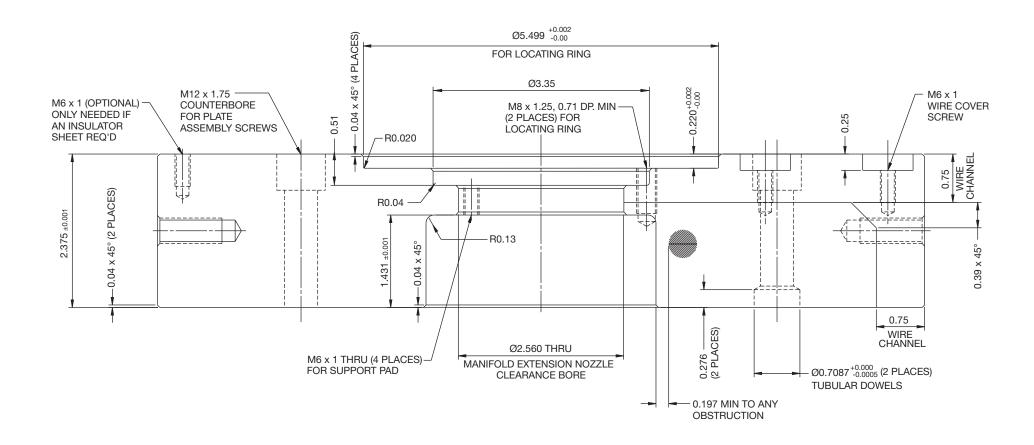
2-Drop (30 Pitch) - Nozzle Plate Machining Detail (continued)



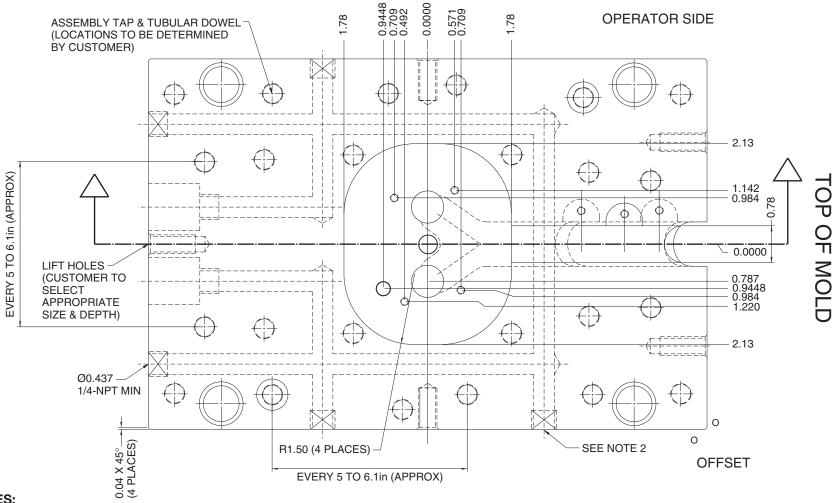
NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC3002 manifold heater channel machining drawing on page 125 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

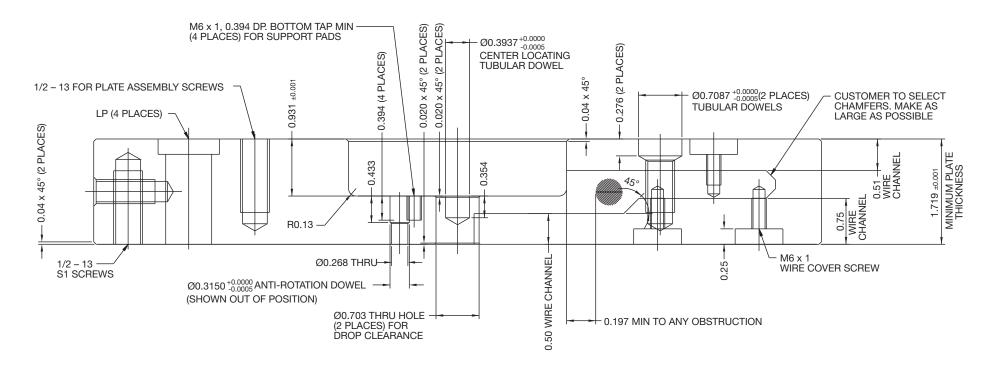

2-Drop (30 Pitch) - Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (30 Pitch) - Manifold Retainer Plate Machining Detail (continued)

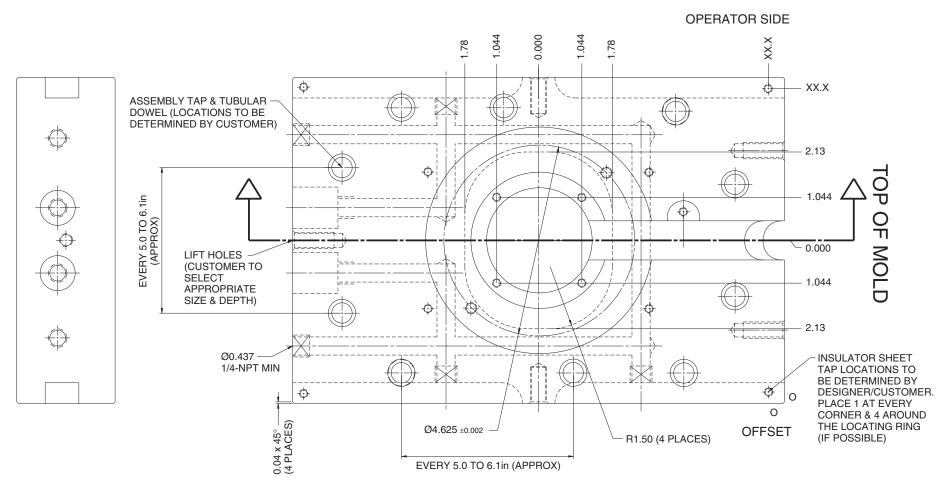
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (40 Pitch) - Nozzle Plate Machining Detail

- NOTES:
- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

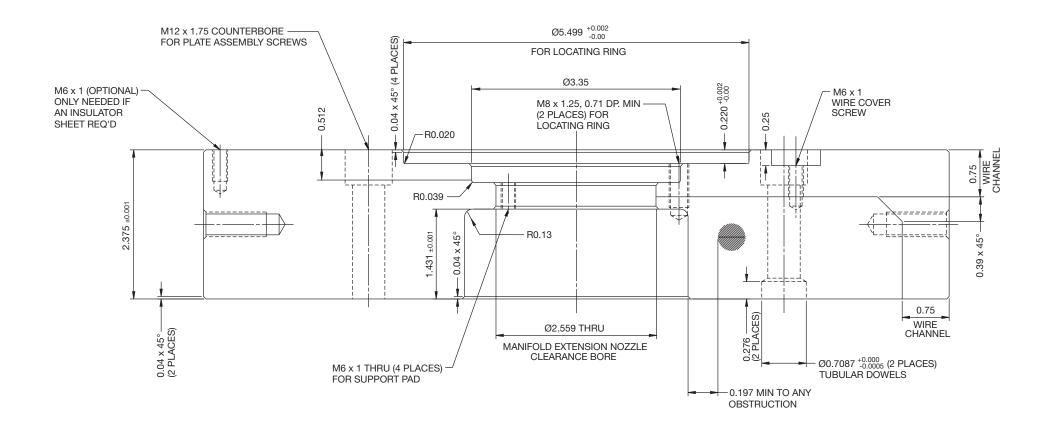
2-Drop (40 Pitch) - Nozzle Plate Machining Detail (continued)



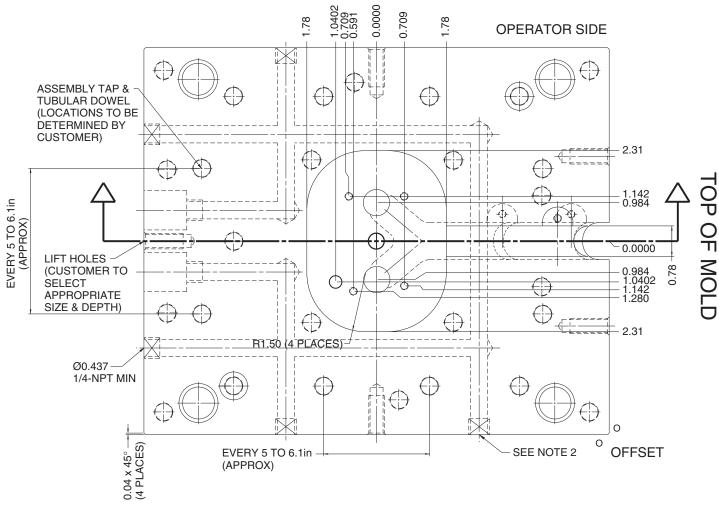
NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC4002 manifold heater channel machining drawing on page 126 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

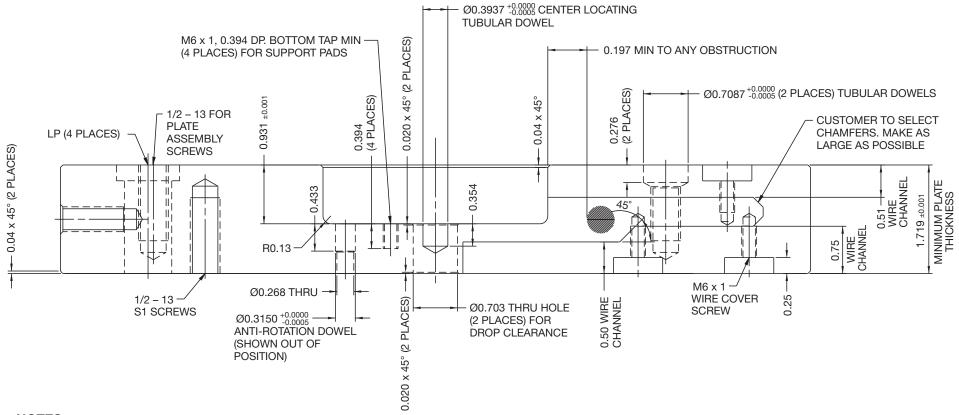

2-Drop (40 Pitch) - Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (40 Pitch) - Manifold Retainer Plate Machining Detail (continued)

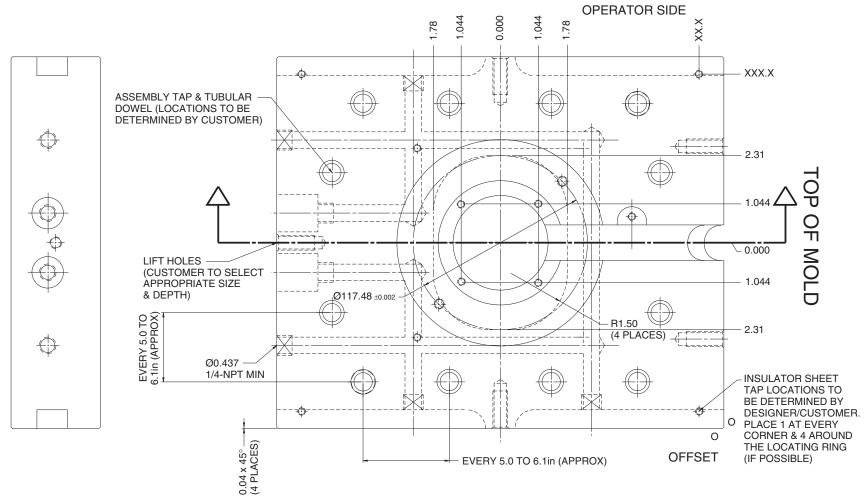
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (50 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

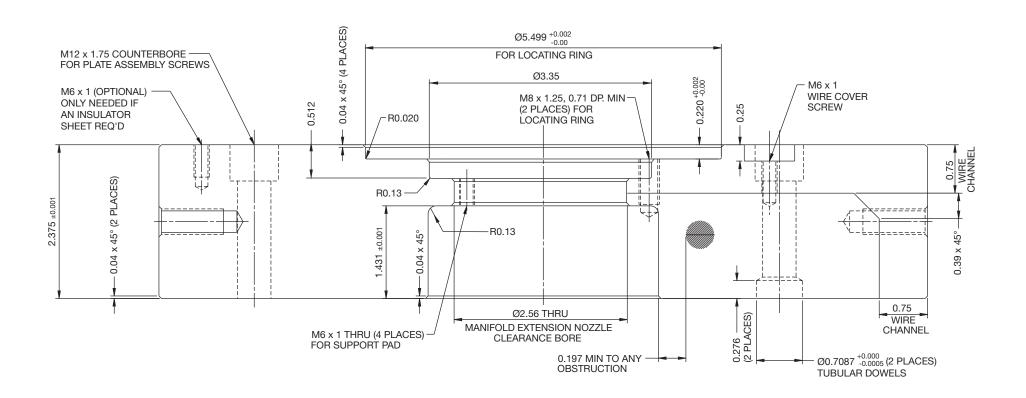
2-Drop (50 Pitch) - Nozzle Plate Machining Detail (continued)



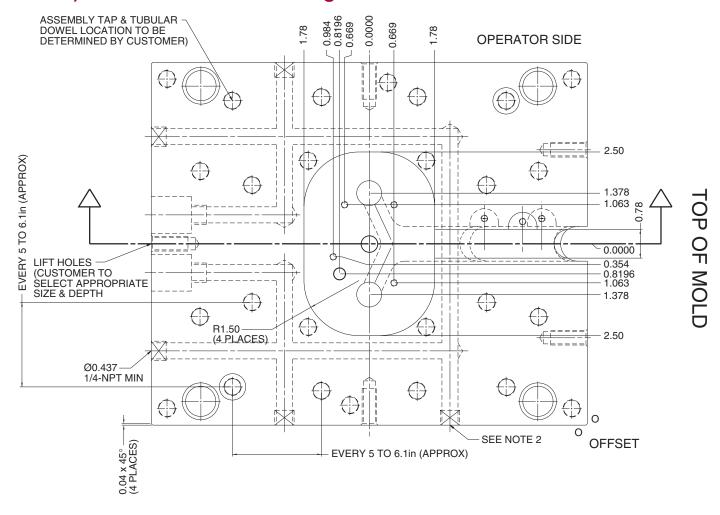
NOTES:

- Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC5002 manifold heater channel machining drawing on page 127 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

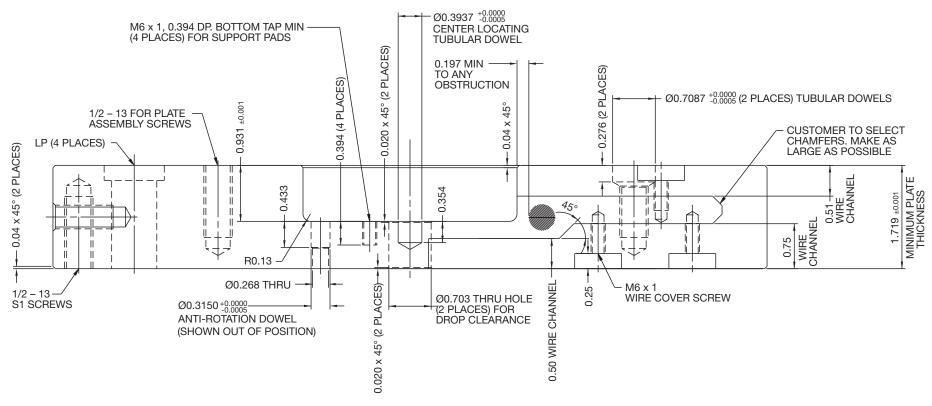

2-Drop (50 Pitch) - Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (50 Pitch) - Manifold Retainer Plate Machining Detail (continued)

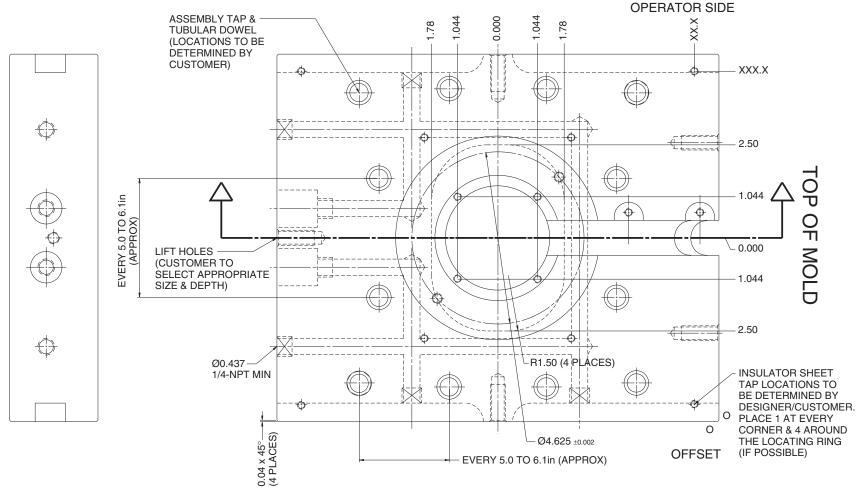
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (70 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

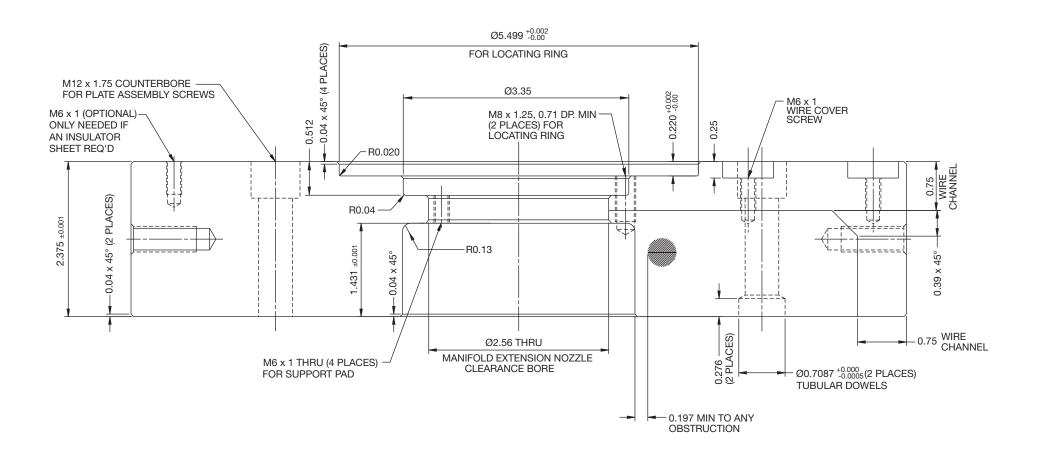
2-Drop (70 Pitch) - Nozzle Plate Machining Detail (continued)



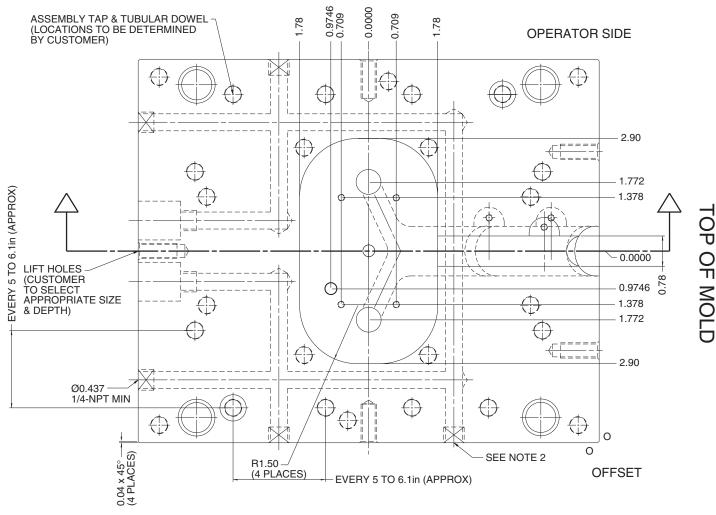
NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC7002 manifold heater channel machining drawing on page 128 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (70 Pitch) - Manifold Retainer Plate Machining Detail

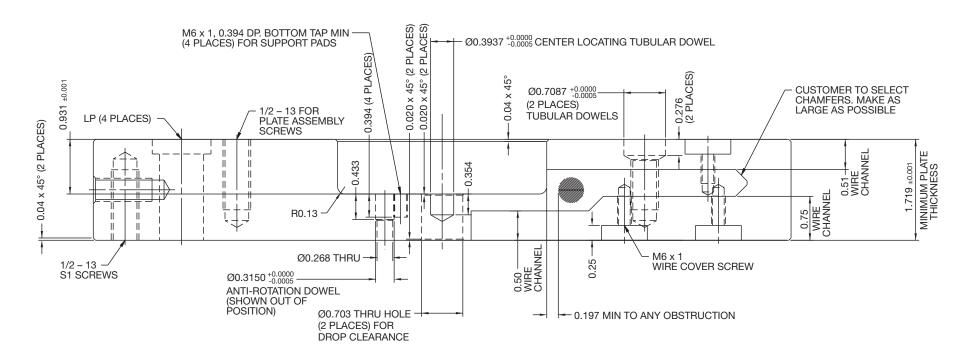
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (70 Pitch) - Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (90 Pitch) - Nozzle Plate Machining Detail

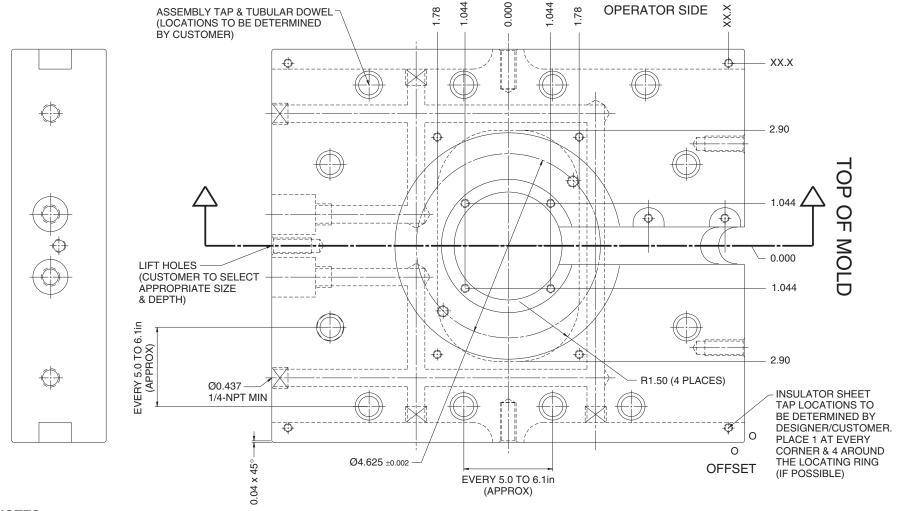

NOTES:

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. For metric dimensions, see pages 10-73.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

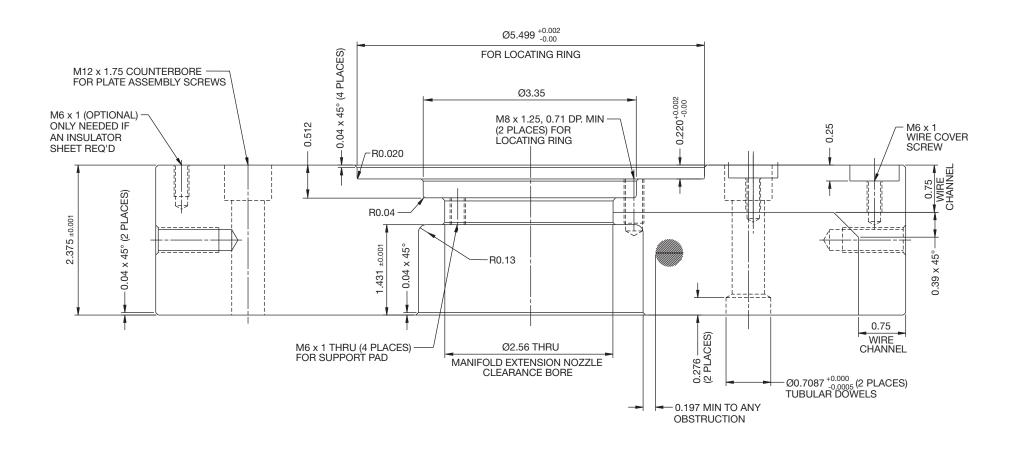
2-Drop (90 Pitch) - Nozzle Plate Machining Detail (continued)



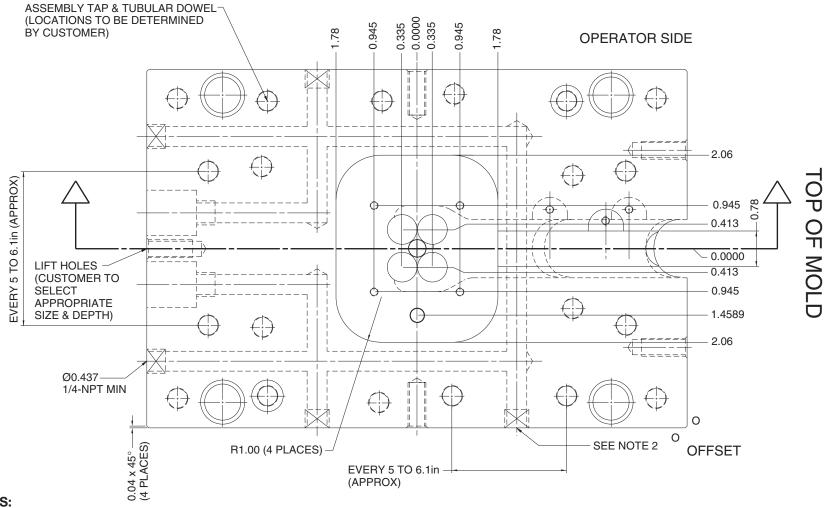
NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC9002 manifold heater channel machining drawing on page 129 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


2-Drop (90 Pitch) - Manifold Retainer Plate Machining Detail

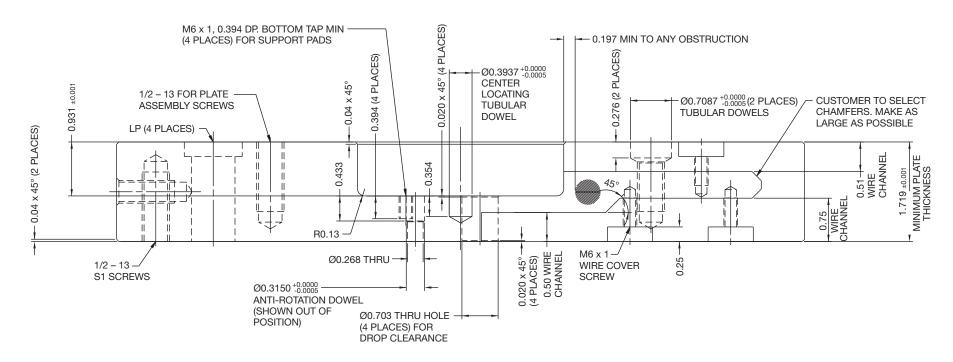
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

2-Drop (90 Pitch) - Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

4 Drop (17x21 Pitch) — Nozzle Plate Machining Detail

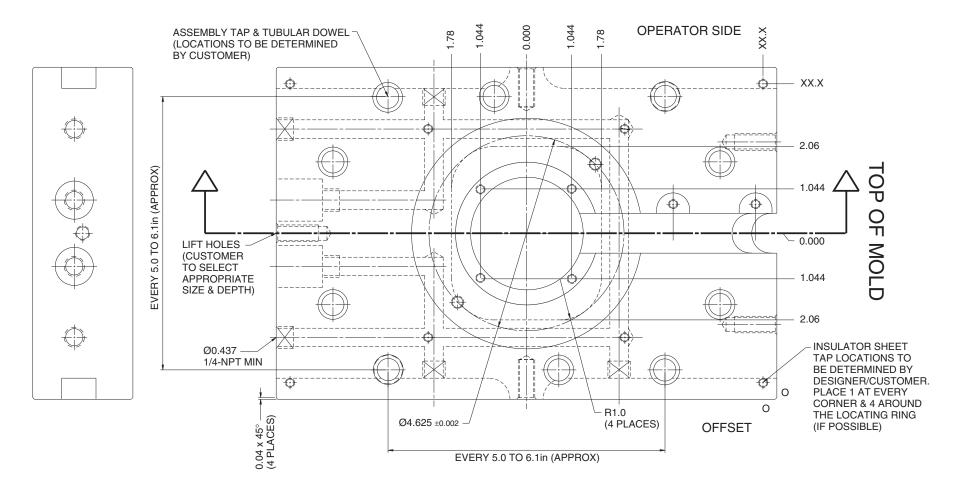


- NOTES:
- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. For metric dimensions, see pages 10-73.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

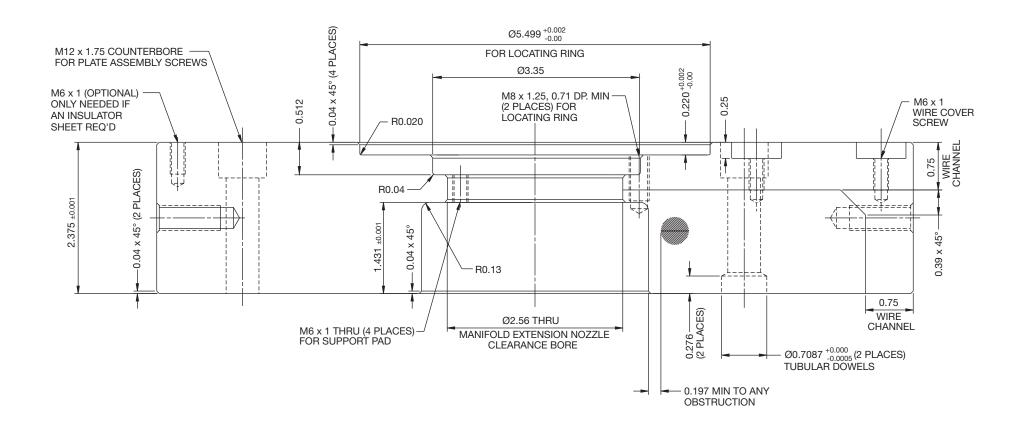
4 Drop (17x21 Pitch) — Nozzle Plate Machining Detail (continued)



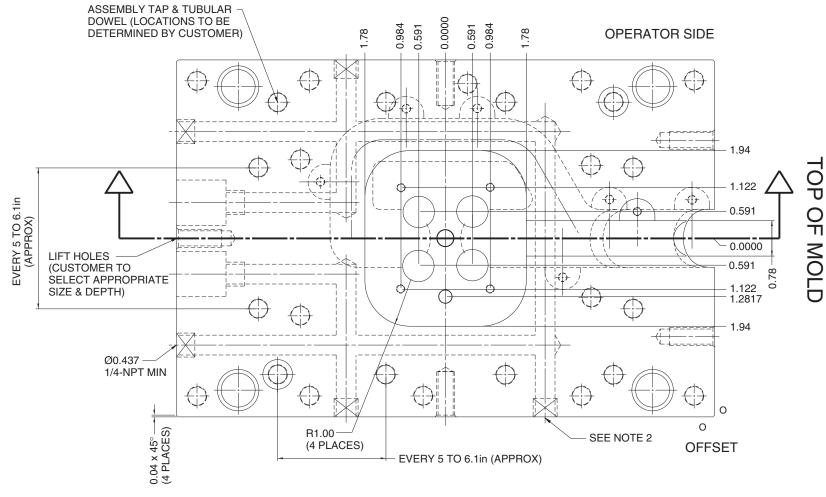
NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC0004 manifold heater channel machining drawing on page 130 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


4 Drop (17x21 Pitch) — Manifold Retainer Plate Machining Detail

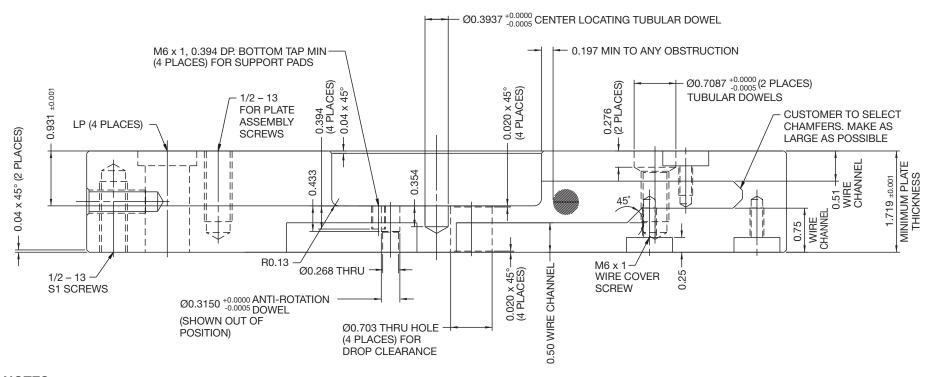
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

4 Drop (17x21 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

4 Drop (30x30 Pitch) - Nozzle Plate Machining Detail

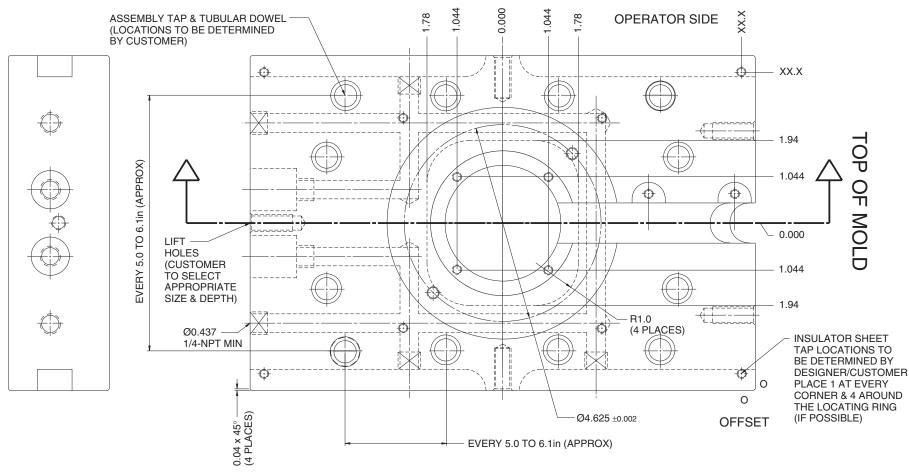

NOTES:

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. For metric dimensions, see pages 10-73.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

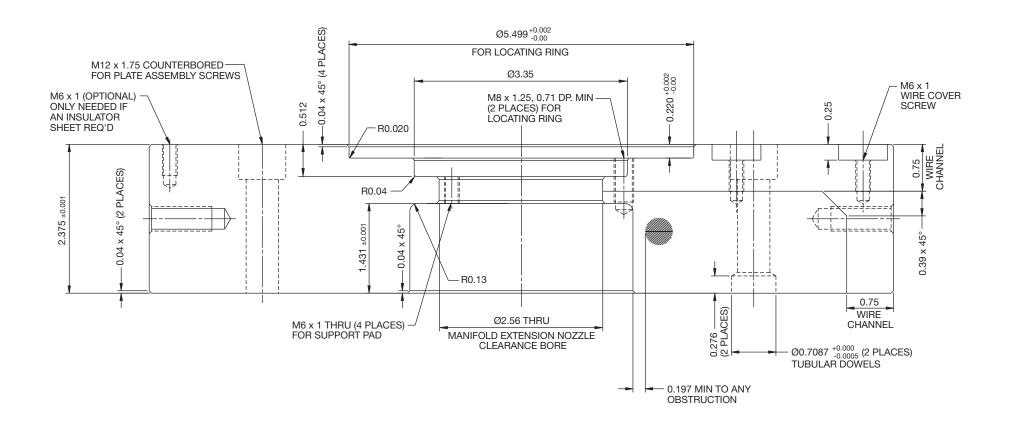
4 Drop (30x30 Pitch) — Nozzle Plate Machining Detail (continued)



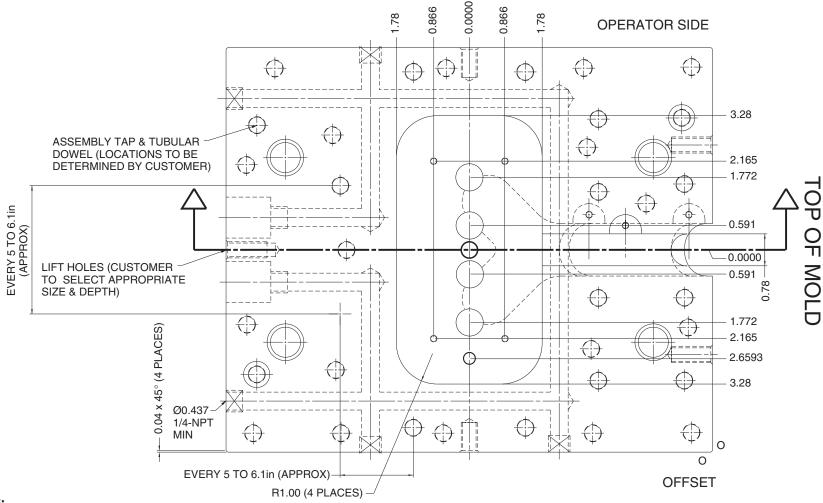
NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If plate thickness is between 1.719 and 1.843, water line between heater channels must be made smaller to ensure 0.197 minimum condition.
- 3. If the manifold is to be positioned 90% to that shown, please refer to MRC3304 manifold heater channel machining drawing on page 131 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

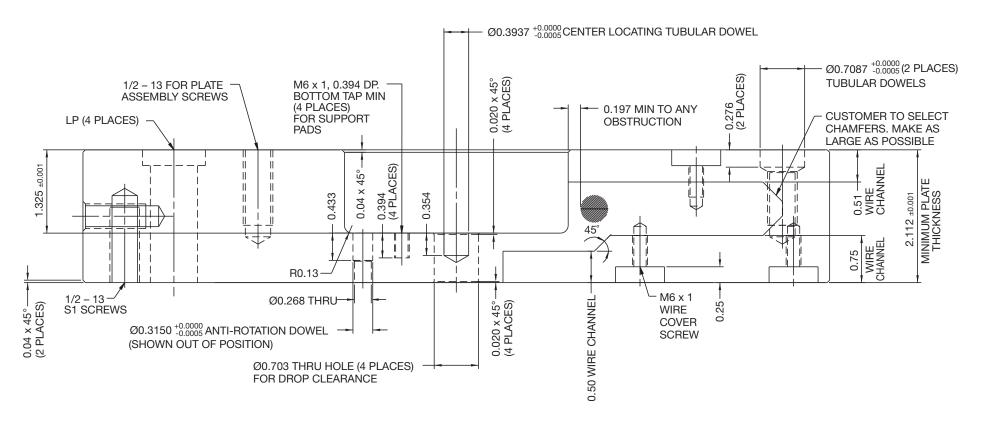

4 Drop (30x30 Pitch) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 7-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

4 Drop (30x30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

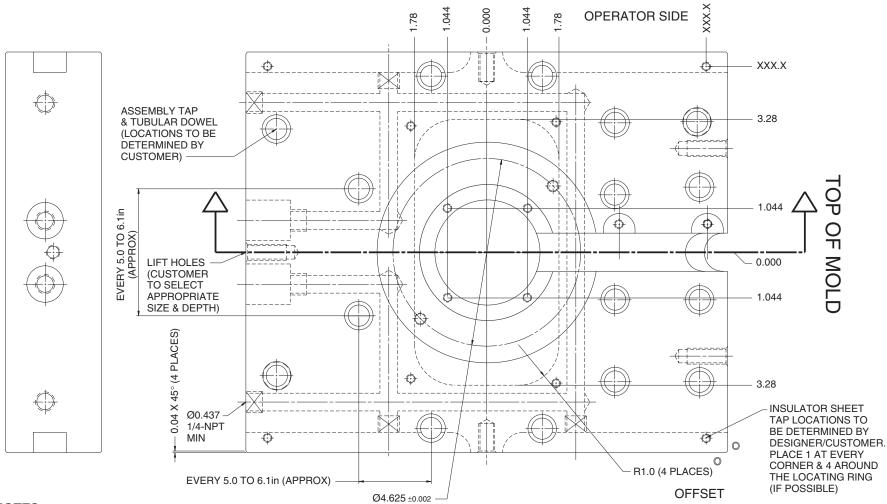
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


4 Drop (30 Pitch In-Line) — Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

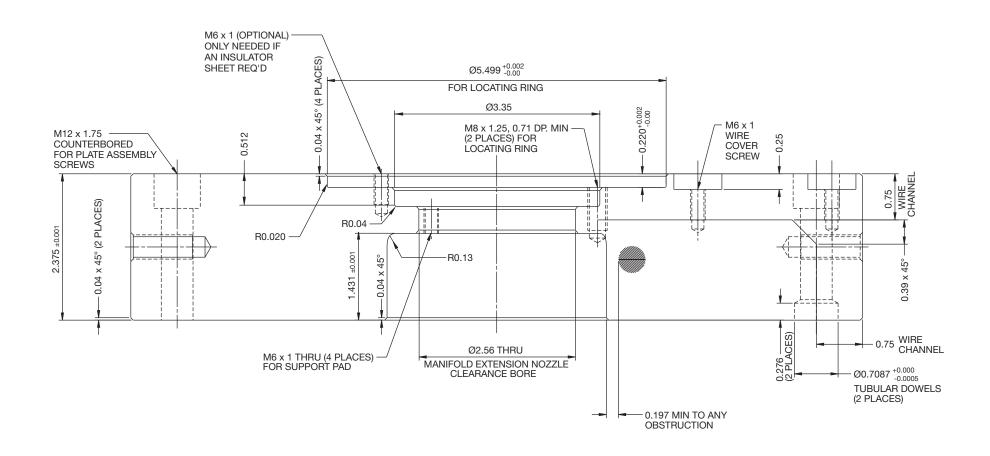
4 Drop (30 Pitch In-Line) — Nozzle Plate Machining Detail (continued)



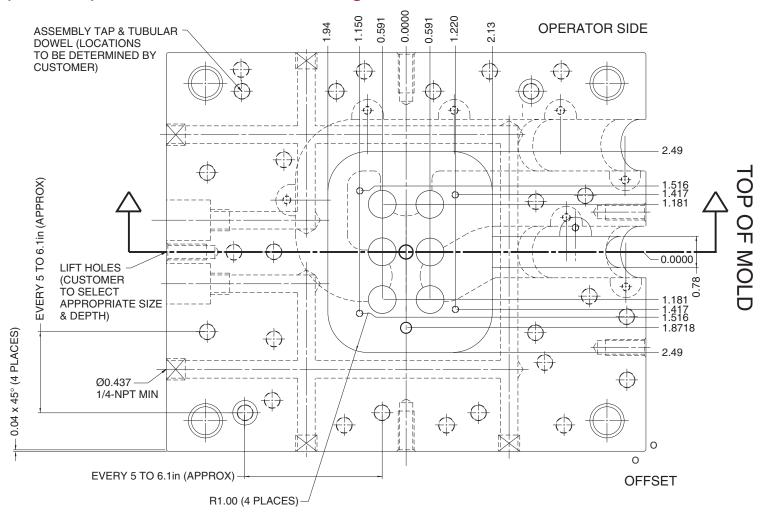
NOTES:

- Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3004 manifold heater channel machining drawing on page 132 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

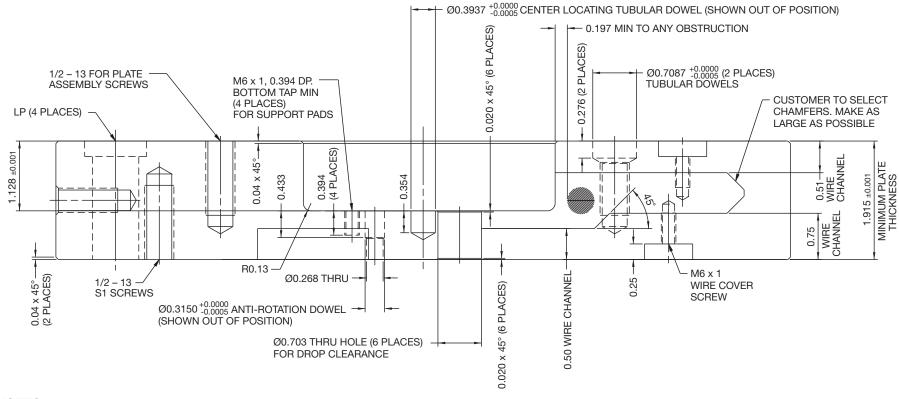

4 Drop (30 Pitch In-Line) — Manifold Retainer Plate Machining Detail

- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

4 Drop (30 Pitch In-Line) — Manifold Retainer Plate Machining Detail (continued)

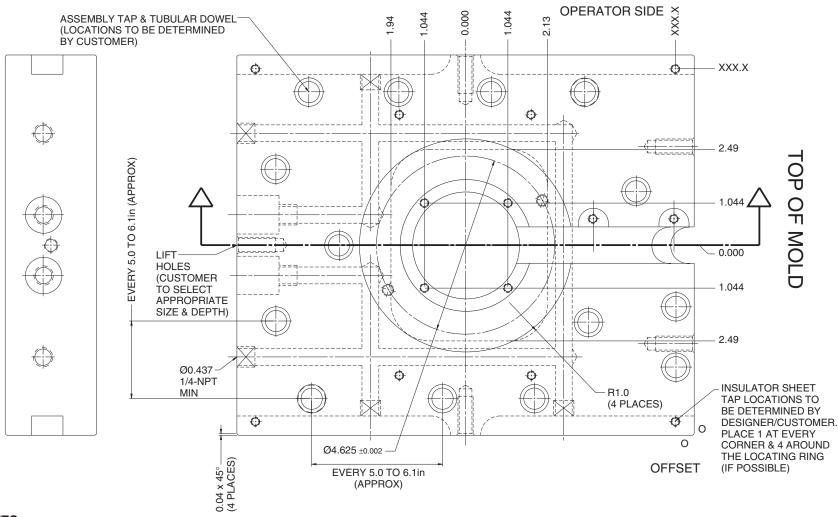
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


6 Drop (30 Pitch) - Nozzle Plate Machining Detail

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

6 Drop (30 Pitch) - Nozzle Plate Machining Detail (continued)

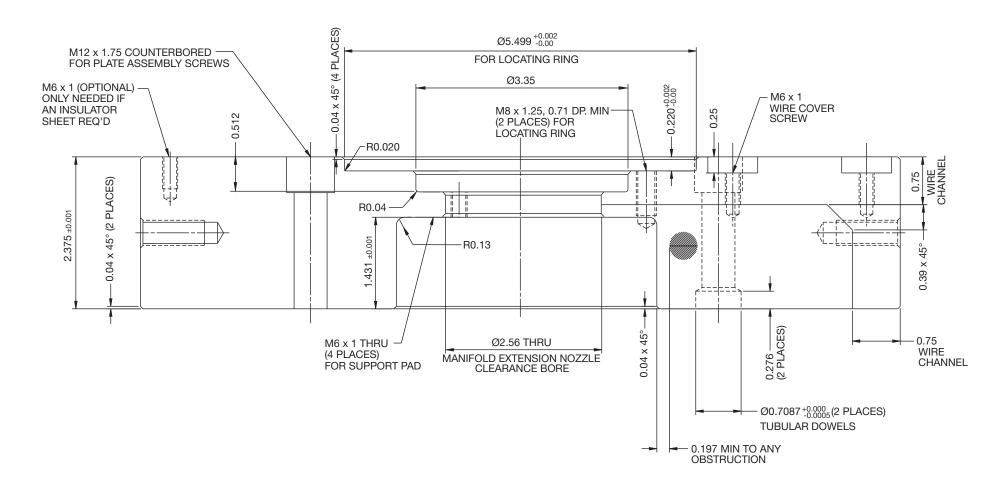


NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3306 manifold heater channel machining drawing on page 133 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For metric dimensions, see pages 10-73.

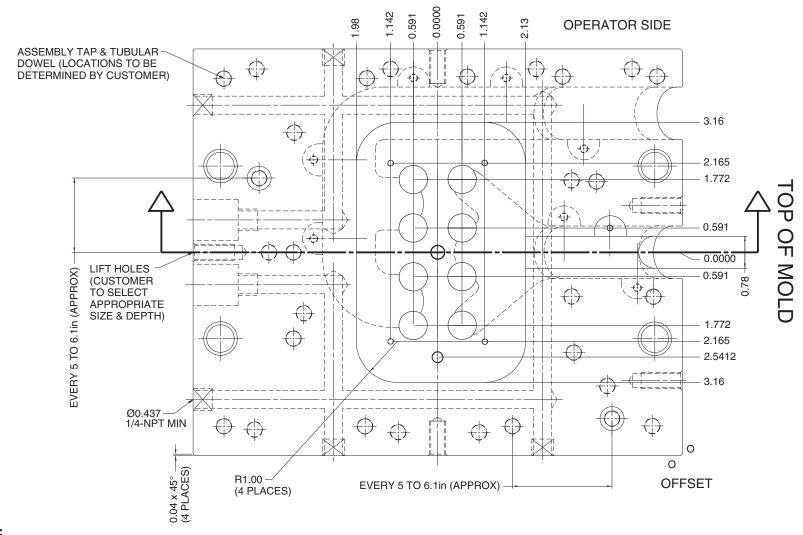
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

6 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail



NOTES:

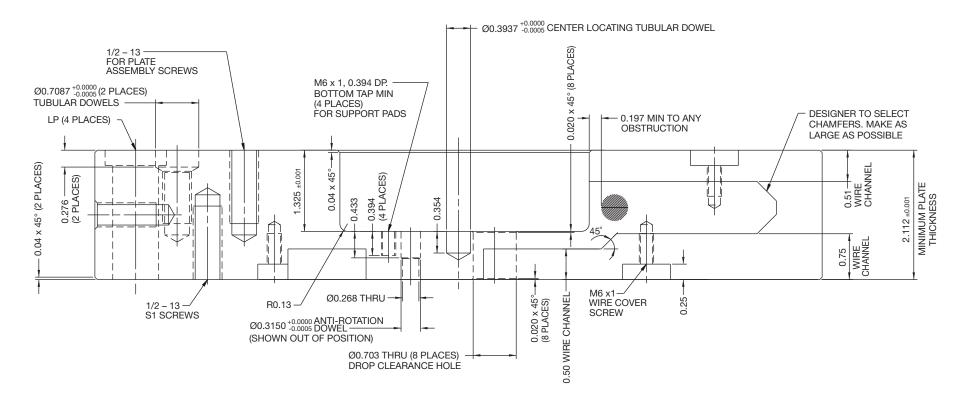
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

6 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

8 Drop (30 Pitch) — Nozzle Plate Machining Detail

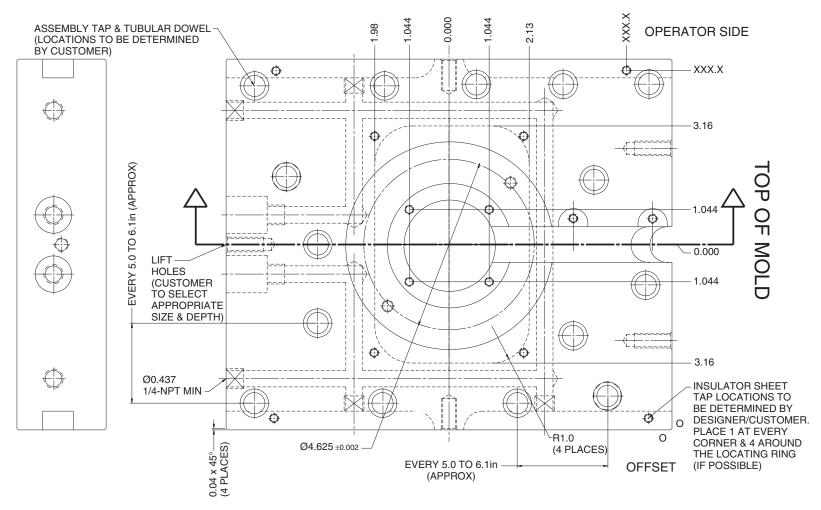

NOTES:

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

8 Drop (30 Pitch) — Nozzle Plate Machining Detail (continued)

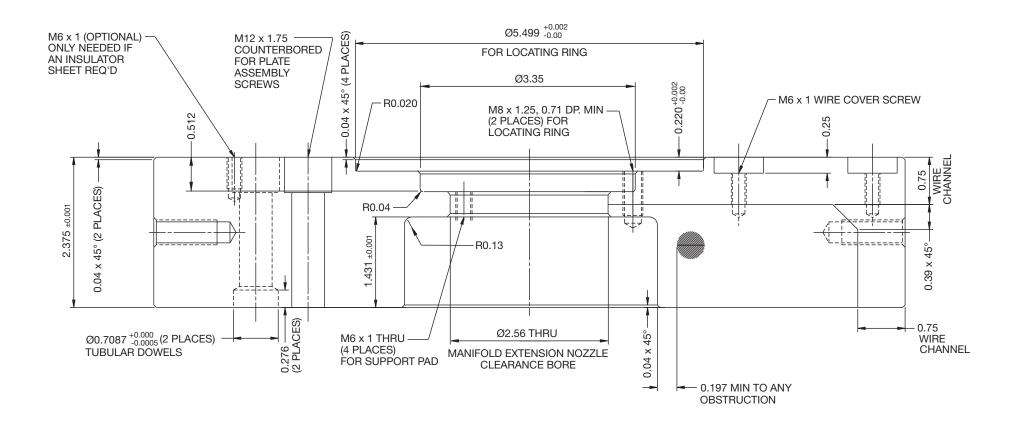


NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3308 manifold heater channel machining drawing on page 134 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For metric dimensions, see pages 10-73.

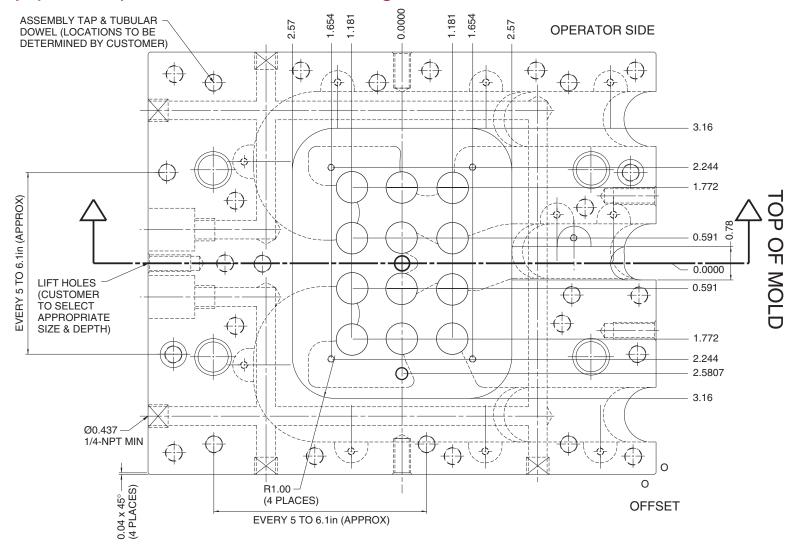
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

8 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail



NOTES:

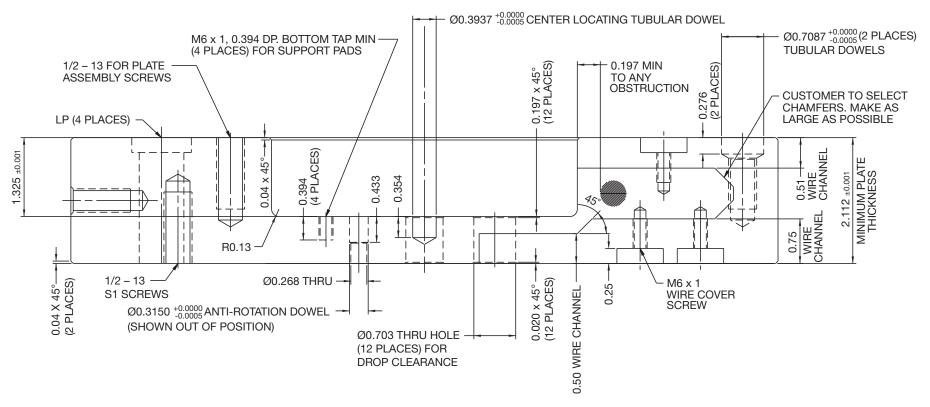
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

8 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

12 Drop (30 Pitch) — Nozzle Plate Machining Detail

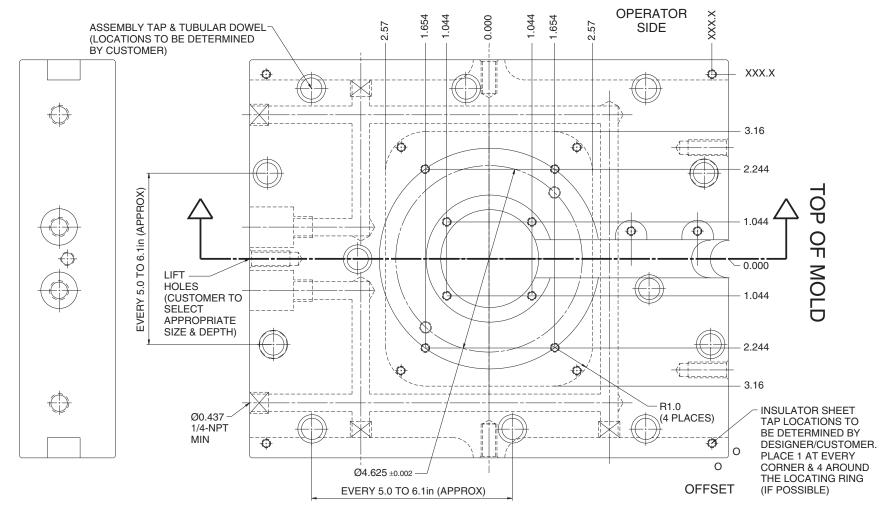

NOTES:

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

12 Drop (30 Pitch) — Nozzle Plate Machining Detail (continued)

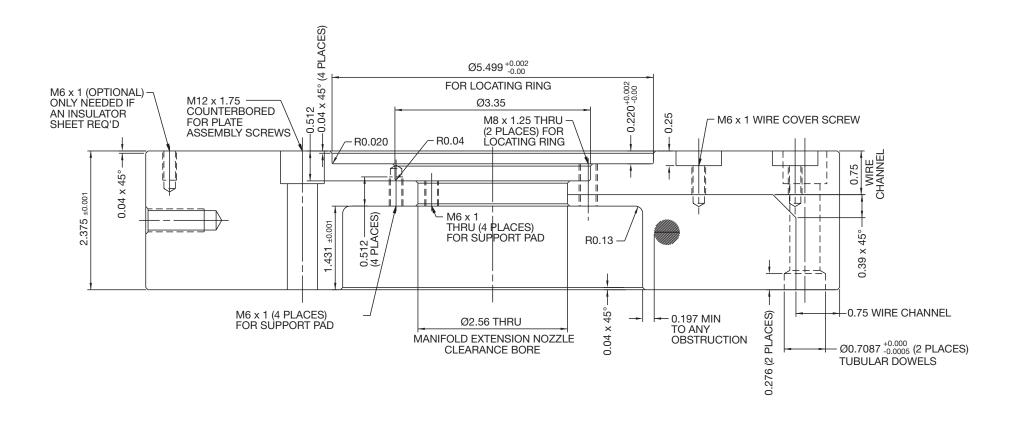


NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3312 manifold heater channel machining drawing on page 135 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For metric dimensions, see pages 10-73.

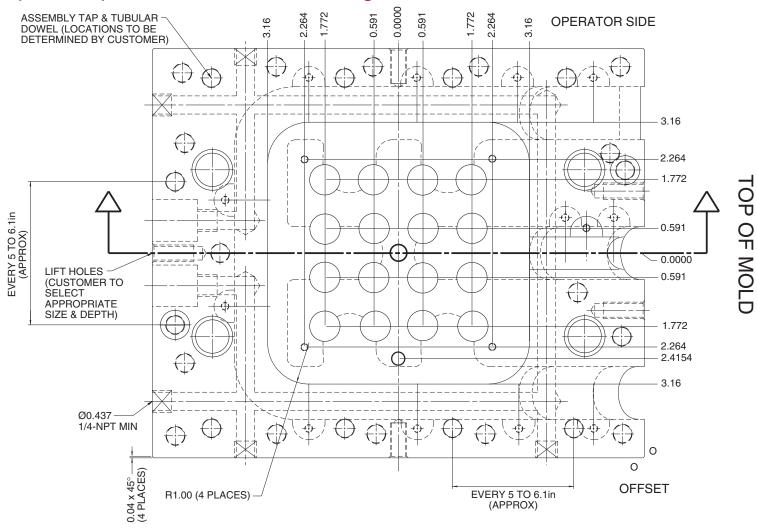
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

12 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail



NOTES:

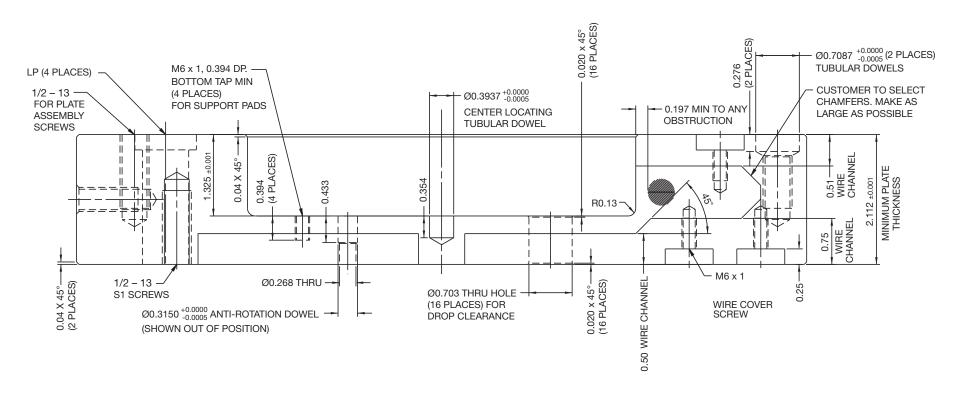
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

12 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

16 Drop (30 Pitch) — Nozzle Plate Machining Detail

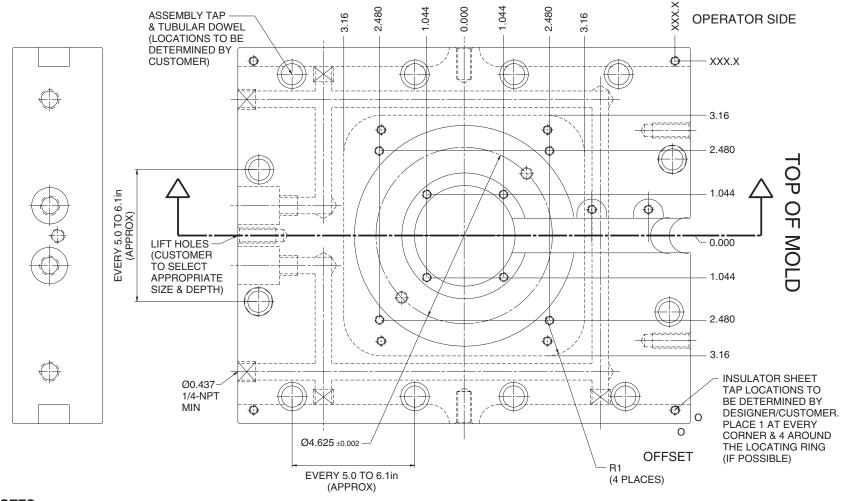

NOTES:

- 1. Wire channel, drop configuration, water lines, leader pins, and assembly screws shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

16 Drop (30 Pitch) — Nozzle Plate Machining Detail (continued)

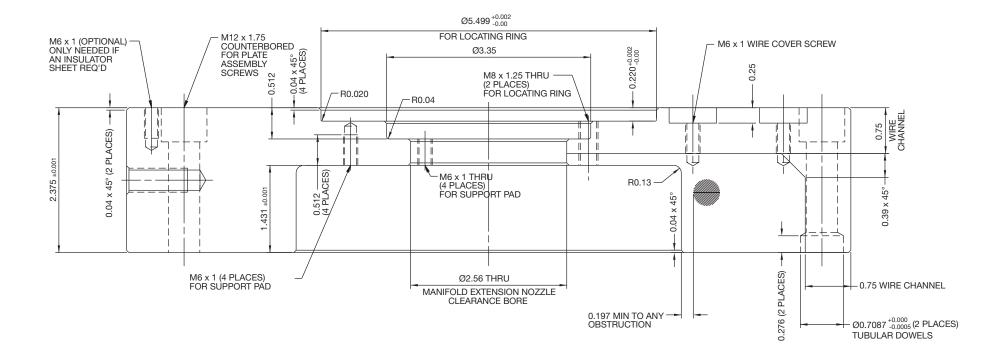


NOTES:

- 1. Wire channel depth to be 0.75 deep except when plate thickness does not provide 0.250in steel support underneath pocket. In that case, wire channel depth to be 0.50 deep, under the pocket and then chamfered (45°) to 0.75 deep outside the pocket. CAUTION: Avoid wire channel interference with M6 support pad taps.
- 2. If the manifold is to be positioned 90° to that shown, please refer to MRC3316 manifold heater channel machining drawing on page 136 for the channel location. The four M6 taps and dowel must be rotated 90° also.
- 3. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

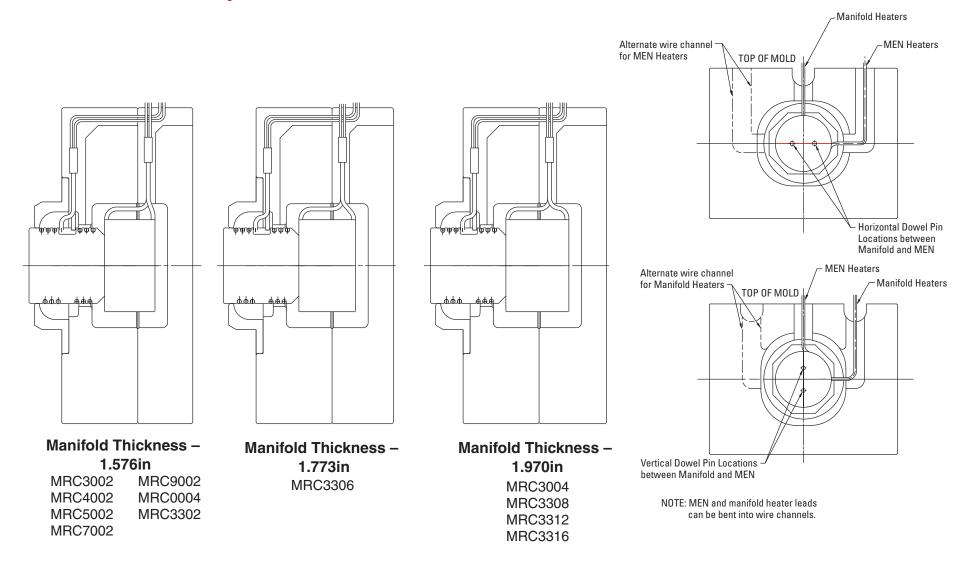
16 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail



NOTES:

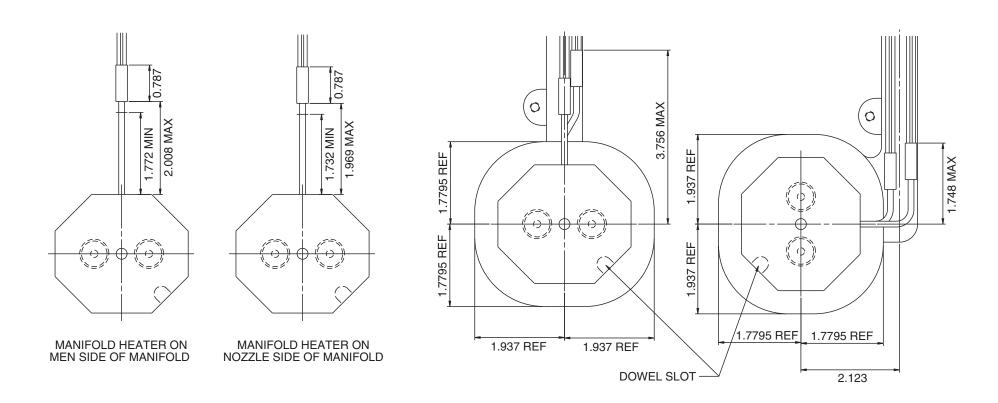
- 1. Water lines, assembly counterbores and insulator sheet taps shown as example only. 9-7/8" x 11-7/8" mold shown.
- 2. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


16 Drop (30 Pitch) — Manifold Retainer Plate Machining Detail (continued)

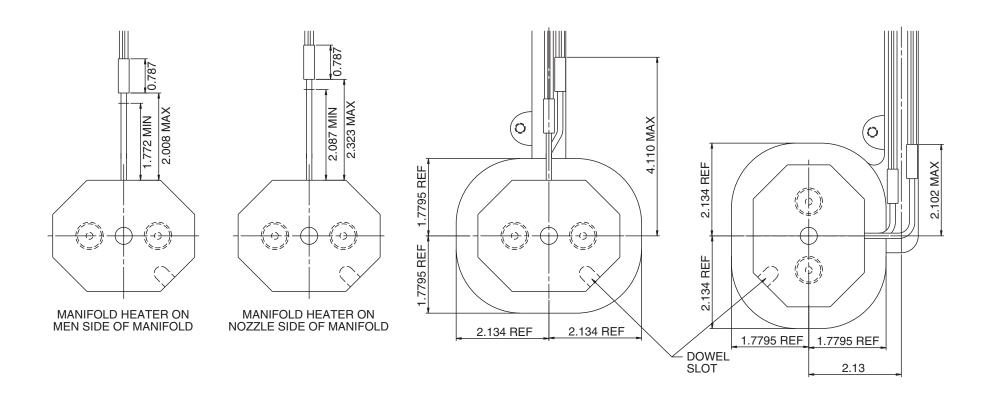
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Rectangular Multi-Nozzle Assemblies – Manifold Heater Layout


MEN Heater Wire Channels

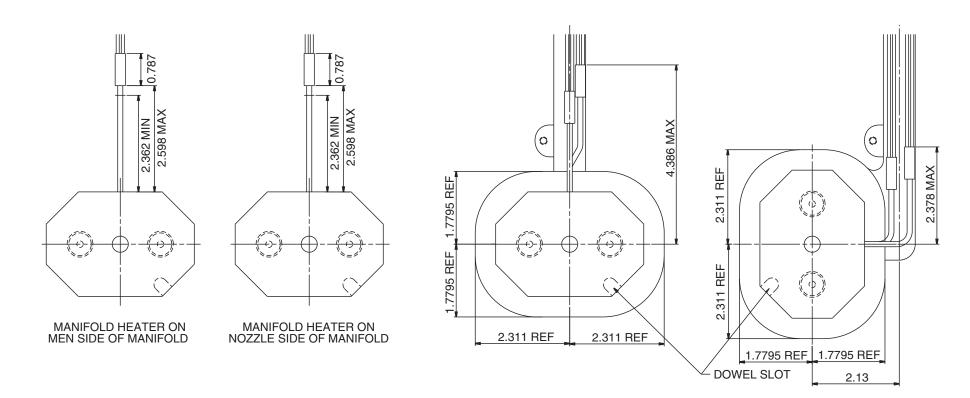
Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3002

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

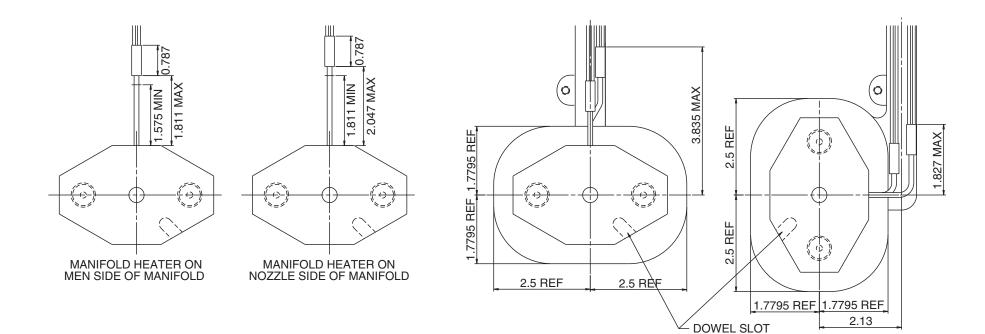
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC4002

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

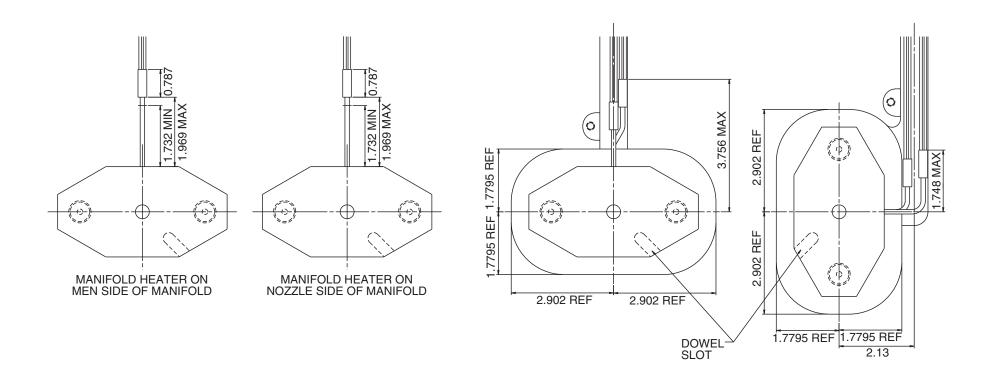
MRC5002


Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

www.dme.net

127

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC7002

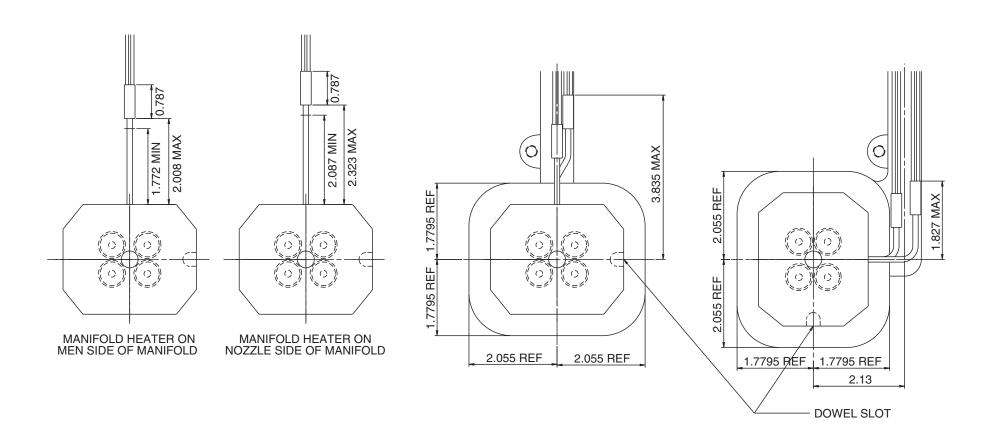
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

MRC9002

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

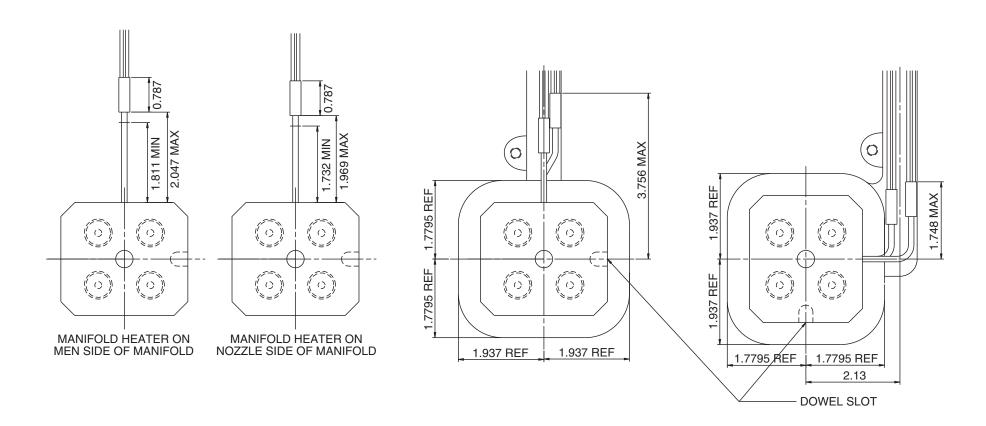
www.dme.net


129

Inch Dimensions

SECTION 1

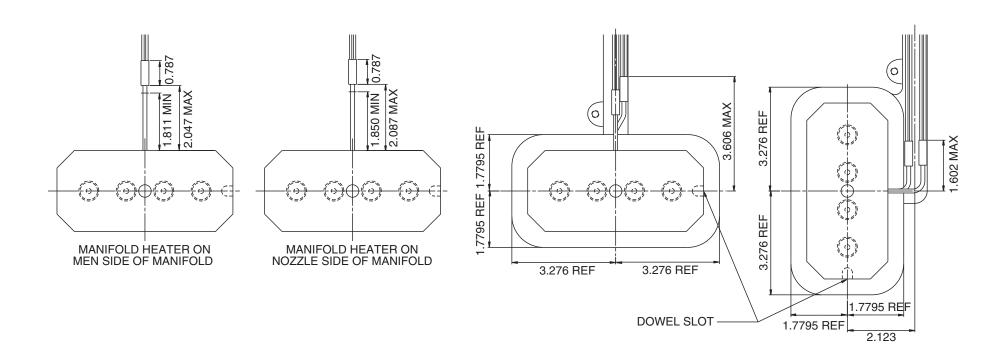
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC0004

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

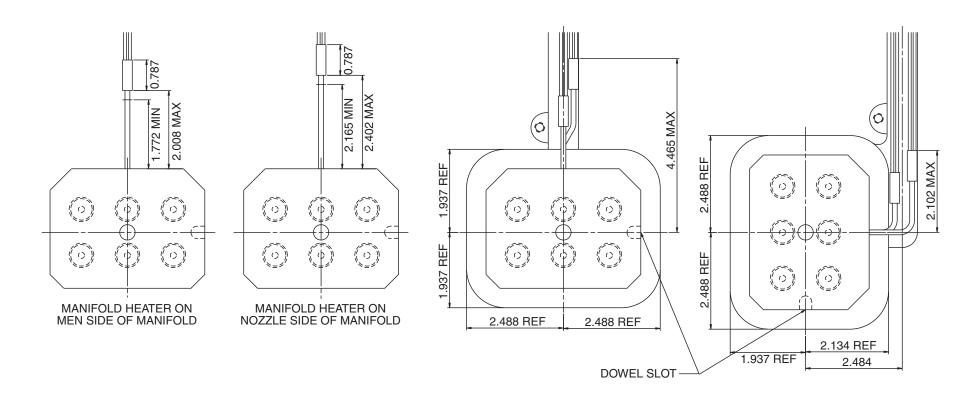
MRC3304


Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

www.dme.net

131

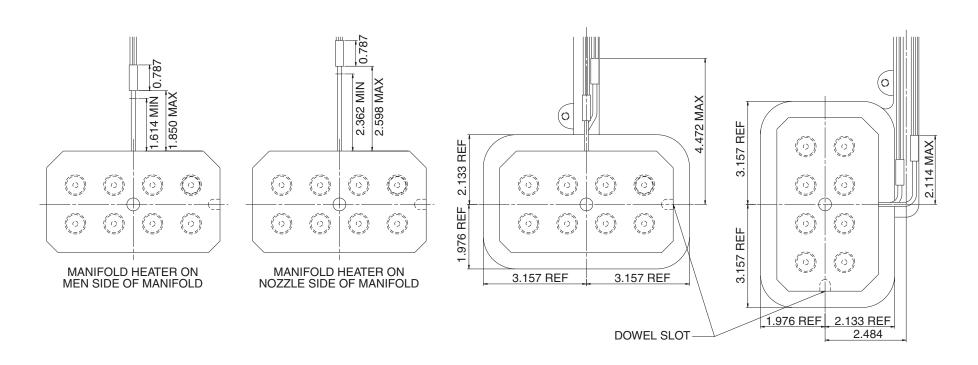
Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3004

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

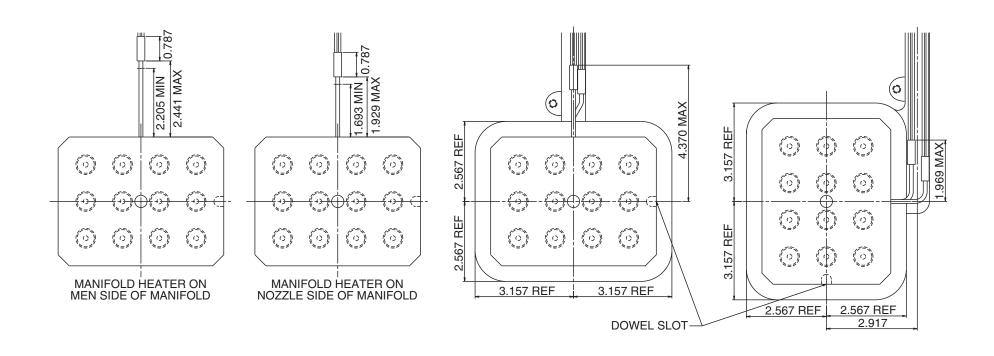
MRC3306


Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

www.dme.net

133

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines


MRC3308

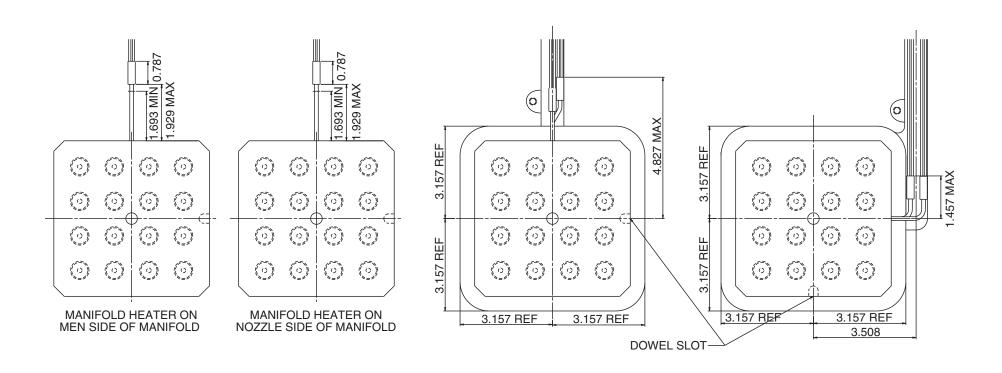
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

MRC3312

Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot

www.dme.net

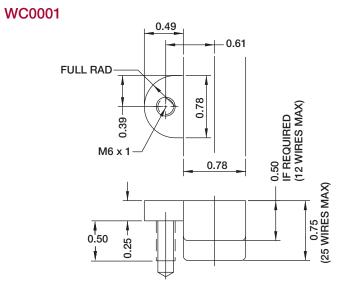

135

Inch Dimensions

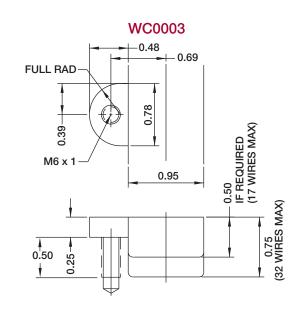
SECTION 1

Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

MRC3316



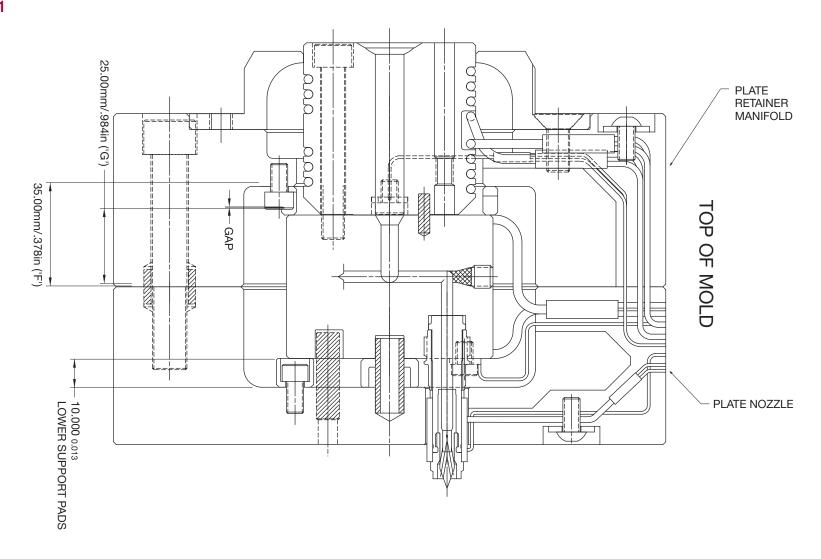
Manifold Heaters Straight Before Bending into Wire Slot Manifold Heaters Bent into Wire Slot


Stellar® Rectangular MNA Pre-Assembly Design & Machining Guidelines

Wire Pocket Machining Details

FULL RAD (8 WIRES MAX) (17 WIRES MAX)

MC0005 0.49 0.80 FULL RAD WE ST. 1 1.28 1.28 1.28 (24 WIRES MAX) (24 WIRES MAX)


NOTES:

- 1. Use M6 x 1/4" long BHCS and torque to 16 N.m (11.7 ft-lbs) for each wire cover.
- To facilitate assembly use 75% of the maximum number of wires. Nozzle heater = 2 wires; Manifold heaters = 4 wires (total); MEN heaters = 4 wires (total); Nozzle thermocouple = 1 wire; Manifold thermocouple = 1 wire; MEN thermocouple = 1 wire.
- 3. Radius all wire channels to suit.
- 4. For metric dimensions, see pages 10-73.

Stellar® Rectangular MNA Assembly Information

Assembly Section View

Fig. 2-1

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Assembly Information

Inspection of the Stellar Manifold and Components

Prior to system assembly, DME strongly suggests that you complete the following inspection and establish the procedures that will facilitate proper system assembly.

- 1. Ensure that all components provided are the correct part numbers and quantities.
- 2. Check all the supplied heaters for proper resistance in ohms (Ω) and for insufficient resistance to ground conditions by doing the following:
 - Measure each heater's resistance and determine if they are equivalent. Record on Master Inspection Sheet. (Insufficient resistance to ground is defined as a reading to ground of 20,000 Ω or less.)

Assembly Instructions

(Refer to numbered items in Fig. 2-7 and Table 2-2.)

Nozzle Plate

- 1. Place tubular dowel (item 6) into center bore in the nozzle plate and the anti-rotation dowel (item 8) into the hole in the nozzle plate.
- 2. Place (2) tubular dowels (item 18) into bore in the nozzle plate.
- 3. Grind the (4) lower support pads (item 9) and center support pad (item 7) to 10.000 ± 0.013 mm (grind together to ensure even height).
- 4. Place center support pad (item 7) concentric with the tubular dowel (item 6).
- 5. Attach the (4) lower support pads (item 9) into the nozzle plate pocket using the support pad screws (item 10).

Manifold

- 6. Place the (2) MEN locating dowels (item 13) into the manifold.
- 7. Attach the manifold thermocouple (item 4) on nozzle side using the manifold thermocouple screw (item 5).
- 8. Insert the manifold assembly (item 1) into the pocket in the nozzle plate and bend the manifold heater and thermocouple wires into channel.
- 9. Measure "F" (35.00mm nominal—see Fig. 2-1) pocket depth in the manifold retainer plate. Measure "G" (25.00mm nominal) height from the top of the nozzle plate to the top of the manifold. Grind the upper support ring (item 11) to a height that ensures there is a gap present. The size of the gap is determined by the equation on page 11 (metric), page 75 (inch) or on the calculation table.

Stellar® Rectangular MNA Assembly Information

Assembly Instructions (continued)

(Refer to numbered items in Fig. 2-7 and Table 2-2.)

Manifold Retainer Plate

- 10. Attach the upper support ring (item 11) to the manifold retainer plate using the support ring screws (item 12).
- 11. Lower the manifold retainer plate on top of the nozzle plate as shown ensuring the proper orientation of tubular dowels (item 18) and wire channels (the wire channels in both plates should exit at the "top of mold" side).
- 12. Attach the manifold retainer plate to the nozzle plate with M12 screws (item 17). Torque the screws equally to 135 N.m [100 ft. lbs.].

Manifold Extension Nozzle (MEN)

- 13. If the MEN is the heated style, attach the MEN thermocouple into slot on manifold side using the MEN thermocouple screw.
- 14. Attach the MEN to the manifold with (4) M8 screws. Ensure proper orientation with the (2) dowels (item 13). Torque the screws equally to 40 N.m [30 ft. lbs.].
- 15. If applicable, tag the wires of the MEN thermocouple and heaters then route into the wire channel, bending as necessary.
- 16. Install wire covers (item 19) as needed to retain the wires in the channel of the manifold retainer plate using the wire cover screws (item 20).

Locating Ring

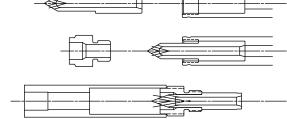
17. Attach the locating ring (item 15) to the manifold retainer plate with (2) M8 flat head cap screws (item 16).

Nozzles

- 18. Verify gate detail dimensions as shown in Figs. 1-2 through 1-3.
- 19. Attach nozzles to the manifold following the steps outlined in Fig. 2-2.
- 20. Place the nozzle heaters, nozzle thermocouples, and snap rings on the nozzle bodies (see Fig. 2-3 through 2-6). Tag and place wires into the wire channels.
- 21. Tag and place the wires of the manifold thermocouple and manifold heaters into the proper wire channels on the nozzle plate.
- 22. Install wire covers (item 19) to retain wires in the channels in the nozzle plate using the wire cover screws (item 20).
- 23. Optional: Attach an insulator sheet to the manifold retainer plate. Insulator sheet and mounting screws are not shown and tapped holes are not provided.
- 24. Connect all wires to electrical connectors in the terminal mounting box. See wiring schematics, Table 2-1.

Stellar® Rectangular MNA Assembly Information

Nozzle Assembly

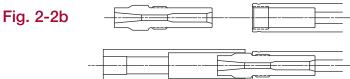

Fig. 2-2

Steps 1 through 6 (Nozzle to Manifold)

- 1. Safety glasses should be worn when assembling components.
- 2. Threads and counterbore of manifold must be clean of any plastic.
- 3. Place nozzle body into manifold.
- 4. Apply high temperature anti-seize compound to nut threads to prevent galling or seizing. Use Fel-Pro C5-A or equivalent anti-seize compound.
- 5. Hold nozzle body down by threading nut into manifold.
- 6. Torque nut to 81 N.m [60 ft-lbs] using nut socket tool (SXW0002).

Point Gate Tip or Thru Hole Tip Sub-Assemblies

Fig. 2-2a

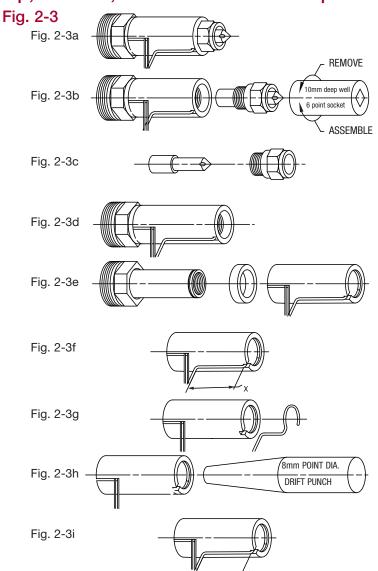


Steps 7 through 11 (Tip Sub-assembly and Retainer to Nozzle)

- 7. Safety glasses should be worn when assembling components.
- 8. Threads and counterbore of nozzle must be clean of any plastic.
- 9. Slide tip into nozzle body.
- 10. Thread retainer into nozzle body.
- 11. Place socket tool carefully over retainer so as to not damage tip. Torque retainer to 11.3 N.m [100 in-lbs] using a 10mm deep well 6-point socket tool and torque wrench.

NOTE: For Thru Hole Tip follow same instructions as for Point Gate Tip.

Sprue Gate Tip

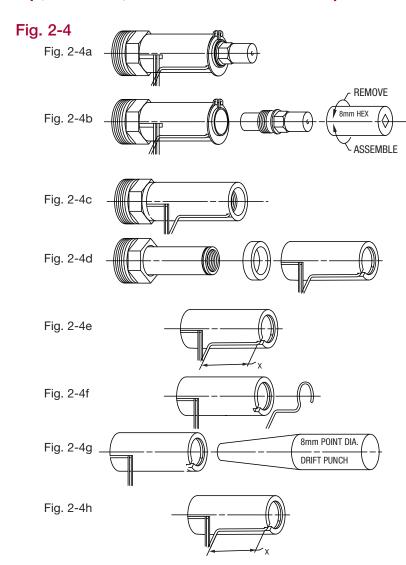

Steps 12 through 15 (Sprue Gate Tip to Nozzle)

- 12. Safety glasses should be worn when assembling components.
- 13. Threads and counterbore of nozzle must be clean of any plastic.
- 14. Thread sprue gate tip into nozzle body.
- 15. Place socket tool carefully over tip so as to not damage front surface and edge of tip. Torque tip to 14 N.m [125 in- lbs]. For sprue gate tip, use socket tool (SXW0003).

Stellar® Rectangular MNA Assembly Information

Nozzles with Standard Coil Heater and Point Gate Tip

Tip, Retainer, Heater and Thermocouple Removal Instructions


- Stellar nozzle sub-assembly with tip sub-assembly (see Fig. 2-3a). Threaded style nozzle with SXF5100 Retainer and SXT4010 tip shown. Same instructions apply to SXT5010 or SXT5200 tips using SXF5000 Retainer.
- 2. Safety glasses and gloves should be worn when working on the mold.
- 3. Turn nozzle heater on, and set at 10-38°C (50-100°F) below set point of processing temperature to allow for easier tip removal.
- 4. Carefully clean plastic material from around tip and retainer.
- Remove retainer with 10mm deep well 6-point socket turning counterclockwise (see Fig. 2-3b). Socket will fit over the front seal-off area when placed on retainer hex. DO NOT DAMAGE SEAL-OFF AREA.
- 6. Carefully remove tip from retainer (see Fig. 2-3c). Inspect seal-off area for out of roundness and/or score marks on seal area, and replace retainer if either condition occurs. Inspect tip for any wear and replace if wear has occurred.
- 7. Clean plastic material from thread and counterbore areas in nozzle body to ensure proper assembly (see Fig. 2-3d).
- 8. Turn off nozzle heater and disconnect heater and thermocouple leads from connectors on mold. Allow nozzle time to cool down.
- 9. Remove heater, thermocouple and spacer from nozzle body (see Fig. 2-3e).
- 10. Measure thermocouple leads "X" (see Fig. 2-3f).
- 11. Remove thermocouple from heater end cap groove (see Fig. 2-3g).
- 12. Carefully place new thermocouple into heater end cap groove with lead coming out the slot. Use an 8mm (5/16") point diameter drift punch by hand to spread the thermocouple into the heater end cap groove. This will allow the heater with thermocouple to slide onto nozzle body (see Fig. 2-3h).
- 13. Bend thermocouple lead 90° along the length of the heater (see Fig. 2-3i). Bend heater and thermocouple leads to the correct "X" length at 90° angle to the heater. Do not rebend rigid leads. Rebending leads can result in damage to circuit.
- 14. Slide spacer and heater with thermocouple over nozzle body (see Fig. 2-3e).
- 15. DO NOT LUBRICATE OR USE ANTI-SEIZE ON RETAINER THREADS.
- 16. Assemble tip into retainer.
- 17. Thread retainer clockwise into the nozzle body and torque to 11.3 N.m (8.3ft-lbs/100 in-lbs) using a 10mm deep well 6-point socket tool and torque wrench (see Fig. 2-3b).
- 18. Wire heater and thermocouple leads to connectors on mold. Do not connect thermocouple leads to electric power.
- 19. Product may absorb moisture when cool. Use low voltage or power to drain out residual moisture before applying full power. Failure to do so may cause damage to this product.

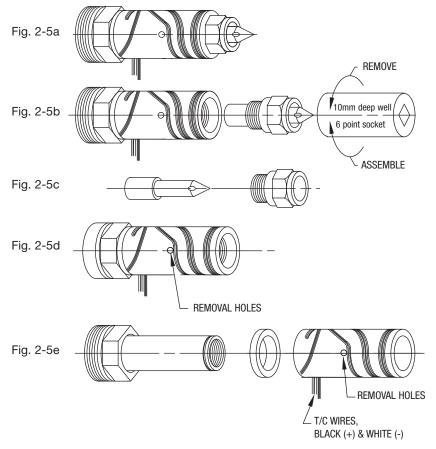
NOTE: Drift Punch not supplied by DME.

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

Stellar® Rectangular MNA Assembly Information

Nozzles with Standard Coil Heater and Sprue Gate Tip Tip, Retainer, Heater and Thermocouple Removal Instructions

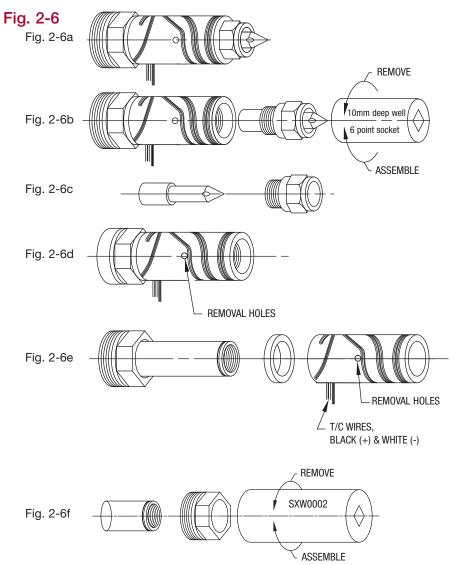
- 1. Stellar nozzle sub-assembly with tip sub-assembly (see Fig. 2-4a). Threaded style nozzle with sprue gate tip shown.
- 2. Safety glasses and gloves should be worn when working on the mold.
- 3. Turn nozzle heater on, and set at 10-38°C (50-100°F) below set point of processing temperature to allow for easier tip removal.
- 4. Carefully clean plastic material from around tip and retainer.
- 5. Remove sprue gate tip with a 8mm deep well socket turning counterclockwise. Do not damage 7mm diameter seal-off area or front molding surface (see Fig. 2-4b).
- 6. Clean plastic material from nozzle and tip threads. Also, clean plastic material from tip counterbore in nozzle body to ensure proper assembly.
- 7. Turn off nozzle heater and allow to cool down (see Fig. 2-4c).
- 8. Remove snap ring, heater, thermocouple and spacer from nozzle body (see Fig. 2-4d).
- 9. Measure thermocouple leads "X" (see Fig. 2-4e).
- 10. Remove thermocouple from heater end cap groove (see Fig. 2-4f).
- 11. Carefully place new thermocouple into heater end cap groove with lead coming out the slot. Use an 8mm (5/16") point diameter drift punch by hand to spread the thermocouple into the heater end cap groove. This will allow the heater with thermocouple to slide onto nozzle body (see Fig. 2-4g).
- 12. Bend thermocouple lead 90° along the length of the heater (see Fig. 2-4h). Bend heater and thermocouple leads to the correct "X" length at 90° angle to the heater. Do not rebend rigid leads. Rebending leads can result in damage to circuit.
- 13. Slide spacer and heater with thermocouple over nozzle body (see Fig. 2-4d). Add snap ring.
- 14. DO NOT LUBRICATE OR USE ANTI-SEIZE ON THREADS.
- 15. Thread tip clockwise into the nozzle body and torque to 14 N.m [10.42 ft-lbs/125 in-lbs] using an 8mm deep well socket tool (see Fig. 2-4b).
- 16. Wire heater and thermocouple leads to connectors on mold. Do not connect thermocouple leads to electric power.
- 17. Product may absorb moisture when cool. Use low voltage or power to drain out residual moisture before applying full power. Failure to do so may cause damage to this product.


NOTE: Drift Punch not supplied by DME.

Stellar® Rectangular MNA Assembly Information

Nozzles with High Performance Heater and Point Gate Tip

Tip, Retainer and Heater Removal Instructions


Fig. 2-5

- Stellar nozzle sub-assembly with tip sub-assembly (see Fig. 2-5a). Threaded style nozzle with SXF5000 Retainer and SXT5010 Tip shown. Same instructions apply to SXT5200 Tip.
- 2. Safety glasses and gloves should be worn when working on the mold.
- 3. Turn nozzle heater on, and set at 10-38°C (50-100°F) below set point of processing temperature to allow for easier tip removal.
- 4. Carefully clean plastic material from around tip and retainer.
- Remove retainer with 10mm deep well 6-point socket turning counterclockwise (see Fig. 2-5b). Socket will fit over the front seal-off area when placed on retainer hex. DO NOT DAMAGE SEAL-OFF AREA.
- Carefully remove tip from retainer (see Fig. 2-5c). Inspect seal-off area for out of roundness and/or score marks on seal area, and replace retainer if either condition occurs. Inspect tip for any wear and replace if wear has occurred.
- 7. Clean plastic material from thread and counterbore areas in nozzle body to ensure proper assembly (see Fig. 2-5d).
- 8. Turn off nozzle heater and disconnect heater and thermocouple leads from connectors on mold. Allow nozzle time to cool down.
- 9. Remove heater and spacer from nozzle body (see Fig. 2-5e).
- 10. If the heater is hard to remove use the removal holes placed 180° apart on the heater body (see Fig. 2-5d). Do not use the leads to pull the nozzle off.
- 11. Bend heater and thermocouple leads only if needed to better fit in the wire channel. For most cases, the heater leads will exit into the wire channel. CAUTION: REPEATED BENDING OF THE HEATER AND THERMOCOUPLE LEADS CAN FRACTURE LEAD WIRES.
- 12. Slide spacer and heater with thermocouple over nozzle body (see Fig. 2-5e).
- 13. DO NOT LUBRICATE OR USE ANTI-SEIZE ON RETAINER THREADS.
- 14. Assemble tip into retainer.
- Thread retainer clockwise into the nozzle body and torque to 11.3 N.m (8.3 ft-lbs/100 in-lbs) using a 10mm deep well 6-point socket tool and torque wrench (see Fig. 2-5b).
- 16. Wire heater and thermocouple leads to connectors on mold. Do not connect thermocouple leads to electric power.
- 17. Product may absorb moisture when cool. Use low voltage or power to drain out residual moisture before applying full power. Failure to do so may cause damage to this product.

Stellar® Rectangular MNA Assembly Information

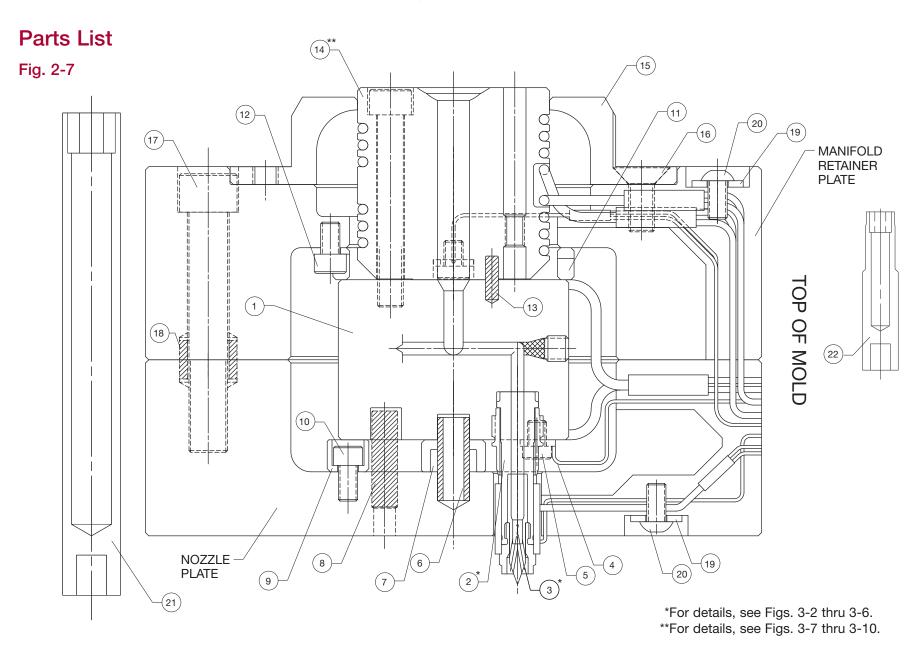
Nozzle Body (Threaded Style) Removal Instructions

- Stellar nozzle sub-assembly with tip sub-assembly (see Fig. 2-6a).
 Threaded style nozzle with SXF5000 Retainer and SXT5010 Tip shown.
 Instructions also apply to SXT5200 Tip.
- 2. Safety glasses and gloves should be worn when working on the mold.
- 3. Turn nozzle heater on, and set at 10-38°C (50-100°F) below set point of processing temperature to allow for easier tip removal.
- 4. Carefully clean plastic material from around tip and retainer.
- Remove retainer with 10mm deep well 6-point socket turning counterclockwise (see Fig. 2-6b). Socket will fit over the front seal-off area when placed on retainer hex. DO NOT DAMAGE SEAL-OFF AREA.
- Carefully remove tip from retainer (see Fig. 2-6c). Inspect seal-off area for out of roundness and/or score marks on seal area, and replace retainer if either condition occurs. Inspect tip for any wear and replace if wear has occurred.
- 7. Clean plastic material from thread and counterbore areas in nozzle body to ensure proper assembly (see Fig. 2-6d).
- 8. Turn off nozzle heater and disconnect heater and thermocouple leads from connectors on mold. Allow nozzle time to cool down.
- 9. Remove heater, thermocouple and spacer from nozzle body (see Fig. 2-6e).
- Remove nut counterclockwise with socket tool DME item no. SXW0002 (see Fig. 2-6f).
- 11. Remove nozzle body from manifold.
- 12. Clean plastic materal from thread and counterbore areas in manifold to ensure proper assembly.
- 13. Place nozzle body into manifold.
- 14. Thread nut clockwise into the manifold and torque to 81 N.m (60 ft-lbs) using nut socket tool and torque (see Fig. 2-6f).
- 15. Slide spacer and heater with thermocouple over nozzle body (see Fig. 2-6e).
- 16. DO NOT LUBRICATE OR USE ANTI-SEIZE ON RETAINER THREADS.
- 17. Assemble tip into retainer.
- 18. Thread retainer clockwise into the nozzle body and torque to 11.3 N.m (8.3 ft-lbs/100 in-lbs) using a 10mm deep well 6-point socket tool and torque wrench (see Fig. 2-6b).
- 19. Wire heater and thermocouple leads to connectors on mold. Do not connect thermocouple leads to electric power.
- 20. Product may absorb moisture when cool. Use low voltage or power to drain out residual moisture before applying full power. Failure to do so may cause damage to this product.

Stellar® Rectangular MNA Assembly Information

Wiring Schematics

Wiring into the terminal box to be as shown in the table below.


Table 2-1

	D-M-E									ZONE NU	MBER								
LAYOUT	CONTROLLER	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2 DROPS	5 ZONE	NOZZLE #1	NOZZLE #2	MANIFOLD	MEN*														
4 DROPS	8 ZONE	NOZZLE #1	NOZZLE #2	NOZZLE #3	NOZZLE #4	MANIFOLD	MEN*												
6 DROPS	6 ZUNE	NOZZLE #1	NOZZLE #2	NOZZLE #3	NOZZLE #4	NOZZLE #5	NOZZLE #6	MANIFOLD	MEN*			_							
8 DROPS	12 ZONE	NOZZLE #1	NOZZLE #2	NOZZLE #3	NOZZLE #4	NOZZLE #5	NOZZLE #6	NOZZLE #7	NOZZLE #8	MANIFOLD	MEN*					_			
12 DROPS	8 ZONE (2)	NOZZLE #1	NOZZLE #2	NOZZLE #3	NOZZLE #4	NOZZLE #5	NOZZLE #6	NOZZLE #7	NOZZLE #8	NOZZLE #9	NOZZLE #10	NOZZLE #11	NOZZLE #12	MANIFOLD	MEN*				
16 DROPS	12 ZONE+ 8 ZONE	NOZZLE #1	NOZZLE #2	NOZZLE #3	NOZZLE #4	NOZZLE #5	NOZZLE #6	NOZZLE #7	NOZZLE #8	NOZZLE #9	NOZZLE #10	NOZZLE #11	NOZZLE #12	NOZZLE #13	NOZZLE #14	NOZZLE #15	NOZZLE #16	MANIFOLD	MEN*

- 1. Designed to operate on a 230-volt supply.
- 2. Manifold heaters wired in parallel.
- 3. MEN heaters wired in parallel.
 - * Heated-style MEN only.
- 4. Thermocouple leads are black and white. White is negative (-); black is positive (+).

J TYPE THERMOCOUPLE STANDARDS										
+ LEAD STANDARD (MAGNETIC) - LEAD										
INTERNATIONAL	IEC 584-3	Black	White							
*	ASTM E230	White	Red							
	BS 1843	Yellow	Blue							
	DIN 43710	Red	Blue							
	JIS C 1610-1981	Red	White							
	NFC 42-324	Yellow	Black							

Stellar® Rectangular MNA Assembly Information

Stellar® Rectangular MNA Assembly Information

Parts List

Manifold heater (top)

End plugs

Set screws

Manifold heater (bottom)

Table 2-2

CALL- OUT NO.	DESCRIPTION	QTY	ITEM NO.	CALL- OUT NO.	DESCRIPTION	QTY	ITEM NO.	CALL- OUT NO.	DESCRIPTION	QTY	ITEM NO.
	2-drop (30-pitch) manifold and components sub-assembly	1	SRC3002		4-drop (17x21-pitch) manifold and components sub-assembly	1	SRC0004		8-drop (30-pitch) manifold and components sub-assembly	1	SRC3308
	2-drop (30-pitch) manifold sub-assembly	1	ARC3002	1	4-drop (17x21-pitch) manifold	1	ARC0004		8-drop (30-pitch) manifold sub-assembly	1	ARC3308
1	Manifold heater (top)	1	MRH0005	l '	sub-assembly				Manifold heater (top)	1	MRH0008
	Manifold heater (bottom)	1	MRH0005		Manifold heater (top)	1	MRH0005	1	Manifold heater (bottom)	1	MRH0013
	End plugs	1	GXP3004		Manifold heater (bottom)	1	MRH0013		End plug	1	GXP3008
	Set screws	1	GXK3008		4-drop (30x30-pitch) manifold and components sub-assembly	1	SRC3304		End plugs	4	GXP3004
	2-drop (40-pitch) manifold and	1	SRC4002		4-drop (30x30-pitch) manifold		AD00004		Set screw	1	GXK3012
	components sub-assembly	·		1	sub-assembly	ı	ARC3304		Set screws	4	GXK3008
	2-drop (40-pitch) manifold sub-assembly	1	ARC4002		Manifold heater (top)	1	MRH0013		12-drop (30-pitch) manifold and	1	SRC3312
1	Manifold heater (top)	1	MRH0005		Manifold heater (bottom)	1	MRH0005		components sub-assembly	'	01100012
	Manifold heater (bottom)	1	MRH0013		4-drop In-line (30-pitch) manifold and	1	SRC3004		12-drop (30-pitch) manifold sub-assembly	1	ARC3312
	End plugs	1	GXP3004		components sub-assembly	·			Manifold heater (top)	1	MRH0008
	Set screws	1	GXK3008		4-drop In-line (30-pitch) manifold sub-assembly	1	ARC3004	1	Manifold heater (bottom)	1	MRH0009
	2-drop (50-pitch) manifold and components sub-assembly	1	SRC5002		Manifold heater (top)	1	MRH0007		End plugs	3	GXP3008
	2-drop (50-pitch) manifold sub-assembly	1	ARC5002	1	Manifold heater (bottom)	1	MRH0007		End plugs	8	GXP3004
4	Manifold heater (top)	1	MRH0006		End plug	1	GXP3006		Set screws	3	GXK3012
'	Manifold heater (bottom)	1	MRH0013		End plugs	2	GXP3004		Set screws	8	GXK3008
	End plugs	1	GXP3004	-	Set screw	1	GXK3010		16-drop (30-pitch) manifold and	1	SRC3316
	Set screws	1	GXK3008		Set screws	2	GXK3008		components sub-assembly		01100010
	2-drop (70-pitch) manifold and	1	SRC7002		6-drop (30-pitch) manifold and components sub-assembly	1	SRC3306		16-drop (30-pitch) manifold sub-assembly	1	ARC3316
	components sub-assembly			_	6-drop (30-pitch) manifold sub-assembly	1	ARC3306		Manifold heater (top)	1	MRH0010
	2-drop (70-pitch) manifold sub-assembly	1	ARC7002		Manifold heater (top)	1	MRH0014	1	Manifold heater (bottom)	1	MRH0011
1	Manifold heater (top)	1	MRH0013	1	Manifold heater (bottom)	1	MRH0013		End plugs	3	GXP3008
	Manifold heater (bottom)	1	MRH0005	'	End plug	1	GXP3006		End plugs	8	GXP3004
	End plugs	1	GXP3004	_	End plugs	4	GXP3004		Set screws	3	GXK3012
	Set screws	1	GXK3008		Set screw	1	GXK3010		Set screws	8	GXK3008
	2-drop (90-pitch) manifold and components sub-assembly	1	SRC9002		Set screws	4	GXK3010				
	2-drop (90-pitch) manifold sub-assembly	1	ARC9002					•			

Questions? Call DME at 1-800-626-6653 (U.S.) or 1-800-387-6600 (Canada)

MRH0006

MRH0005

GXP3004 GXK3008

1

Stellar® Rectangular MNA Assembly Information

Parts List (continued) Table 2-2

CALLOUT				CALLOUT				CALLOUT			
NO.	DESCRIPTION	QTY	ITEM NO.	NO.	DESCRIPTION	QTY	ITEM NO.	NO.	DESCRIPTION	QTY	ITEM NO.
	Nozzle sub-assembly (A = 65) (standard heater)	2-16	SXY0065	2	Nozzle sub-assembly (A = 65) (high performance heater)	2-16	SXY0965		Nozzle sub-assembly (A = 65) (standard heater)	2-16	SXY8065
	Nozzle body	2-16	SXB4068		Nozzle body	2-16	SXB4068		Nozzle body	2-16	SXB4068
2	Nozzle heater	2-16	SHH1039		Nozzle heater	2-16	SXE1039	2	Nozzle heater	2-16	SHH1039
	Nozzle body nut*	2-16	SXE2013		Nozzle sub-assembly (A = 85)	2-16	SXY0985		Nozzle body nut*	2-16	SXE2013
	Nozzle thermocouple	2-16	SXC1001	2	(high performance heater)				Nozzle thermocouple	2-16	SXC1001
	Nozzle heater stop*	2-16	SXD6501	-	Nozzle body	2-16	SXB4088		Snap ring*	2-16	SXR1001
	Nozzle sub-assembly (A = 85) (standard heater)	2-16	SXY0085		Nozzle heater Nozzle sub-assembly (A = 105)	2-16	SXE1059 SXY0905		Nozzle sub-assembly (A = 85) (standard heater)	2-16	SXY8085
2	Nozzle body	2-16	SXB4088	2	(high performance heater)	2-10	3/10903	2	Nozzle body	2-16	SXB4088
	Nozzle thermocouple	2-16	SXC1001		Nozzle body	2-16	SXB4108		Nozzle thermocouple	2-16	SXC1001
	Nozzle heater	2-16	SHH1059		Nozzle heater	2-16	SXE1079		Nozzle heater	2-16	SHH1059
	Nozzle sub-assembly (A = 105) (standard heater)	2-16	SXY0105		Nozzle sub-assembly (A = 125) (high performance heater)	2-16	SXY0925		Nozzle sub-assembly (A = 105) (standard heater)	2-16	SXY8105
2	Nozzle body	2-16	SXB4108	2	Nozzle body	2-16	SXB4128	2	Nozzle body	2-16	SXB4108
	Nozzle thermocouple	2-16	SXC1001		Nozzle heater	2-16	SXE1099		Nozzle thermocouple	2-16	SXC1001
	Nozzle heater	2-16	SHH1079		Nozzle sub-assembly (A = 145)	2-16	SXY0945		Nozzle heater	2-16	SHH1079
	Nozzle sub-assembly (A = 125) (standard heater)	2-16	SXY0125	2	(high performance heater) Nozzle body	2-16	SXB4148		Nozzle sub-assembly (A = 125) (standard heater)	2-16	SXY8125
2	Nozzle body	2-16	SXB4128		Nozzle heater	2-16	SXE1119	2	Nozzle body	2-16	SXB4128
	Nozzle thermocouple	2-16	SXC1001		NOZZIO NOGRO	2 10	OALITIO	_	Nozzle thermocouple	2-16	SXC1001
	Nozzle heater	2-16	SHH1099						Nozzle heater	2-16	SHH1099
	Nozzle sub-assembly (A = 145) (standard heater)	2-16	SXY0145						Nozzle sub-assembly (A = 145) (standard heater)	2-16	SXY8145
2	Nozzle body	2-16	SXB4148					2	Nozzle body	2-16	SXB4148
	Nozzle thermocouple	2-16	SXC1001						Nozzle thermocouple	2-16	SXC1001
	Nozzle heater	2-16	SHH1119						Nozzle heater	2-16	SHH1119

^{*} Common for all Stellar nozzle sub-assemblies in each individual column.

NOTE: Items SXY8065, SXY8085, SXY8105, SXY8125 and SXY8145 for Sprue Gate only.

Stellar® Rectangular MNA Assembly Information

Parts List (continued)

Table 2-2

	<u> </u>	_				I	
CALLOUT NO.	DESCRIPTION	ОТУ	ITEM NO.	CALLOUT NO.	DESCRIPTION	QTY	ITEM NO.
				NO.		Q11	II LIVI NO.
3	Point gate tip sub-assembly - Standard	2-16	SXG5110	14	Unheated MEN sub-assembly with 1/2 and 3/4 in. spherical radius	1	SXX1210
3	Point gate tip sub-assembly - High Performance	2-16	SXG5020		·		
3	Thru hole tip sub-assembly - High Performance	2-16	SXG5201	14	Unheated MEN sub-assembly with 15.5mm spherical radius	1	SXX2210
3	Sprue gate tip	2-16	SXT1040		•	-	GXL2001
4	Manifold thermocouple	1	SXC2001	15	Locating ring for heated MEN	1	
5	Manifold thermocouple screw	1	M68 LHCS		Locating ring for unheated MEN	1	SXL1100
6	Tubular dowel	1	PH 10-26	16	Locating ring screws	2	M820FHCS
	Modified center support			17	Plate assembly screws	Y	M1275
7	(2-drop 30-pitch, 4-drop in-line, 6- and 12-drop	1	SXS3011				SHCS
	manifolds)			18	Tubular dowels	2	PH 18-12
7	Center support (4-drop 17x21)	0	not possible		Wire covers		WC0001,
8	Anti-rotation dowel	1	DP830	19		X	WC0002 &
9	Lower support pads	4	SXS3030				WC0003
10	Lower support pad screws	4	M610SHCS	20	Wire cover screws	Х	M612BHCS
	Upper support ring	1	SXS3040	21	Nut socket tool	1	SXW0002
11	Upper support pads (extra)			22	Sprue Gate Tip socket tool	1	SXW0003
	12-and 16-drop	4	SXS3030				
	Upper support ring screws	4	M612LHCS				
12	Upper support pad screws (extra)		1404001100				
	12- and 16-drop	4	M610SHCS				
13	MEN locating dowels	2	DP412				
44	Heated MEN sub-assembly with 1/2 and 3/4		07//4.04.0				
14	in. spherical radius	1	SXX1010				
4.4	Heated MEN sub-assembly with 15.5mm		07770040				
14	spherical radius	1	SXX2010				

^{*} Common for all Stellar nozzle sub-assemblies in each individual column.

Stellar® Rectangular MNA Ordering Information

Procedure

REQUIRED	ODDEDING	INICODM	ATION.
REGUIRED	URDERING	INFURIN	AHUN:

- 1. Number of Nozzles Required:

 Determine the number of nozzles required.
- 2. Gate Pitch Required:

Choose the gate pitch required. Record the manifold and components sub-assembly item number from Table 3-1, "Sub-Assembly Parts List'; e.g., for a 2-drop 30-pitch, the item number is SRC3002.

3. Manifold and Components Sub-Assembly:

Select an appropriate gating method. For quick reference see pages 5, 10 (metric), 74 (inch) or 155, "Nozzle Selection" and "Nozzle Body Information."

4. Nozzle Tip or Nozzle Tip Sub-Assembly:

Determine the nozzle body sub-assembly item number required from the calculation sheets. For quick reference see pages 10 (metric), 74 (inch) and 155. Determine nozzle heater type: Coil Heater or High Performance Embedded Heater.

- 5. Nozzle Body Sub-Assembly:
- 6. Heated or Unheated MEN:

Specify heated or unheated MEN style (Figs. 3-7 and 3-8).

7. Machine Nozzle Spherical Radius:

Specify 1/2in, 3/4in, or 15.5mm

First-Time Customers Will Need:

- 8. Sprue Gate Tip Socket Tool (see Fig. 3-5):
- 9. Nut Socket Tool (see Fig. 3-6):

Additional Items:

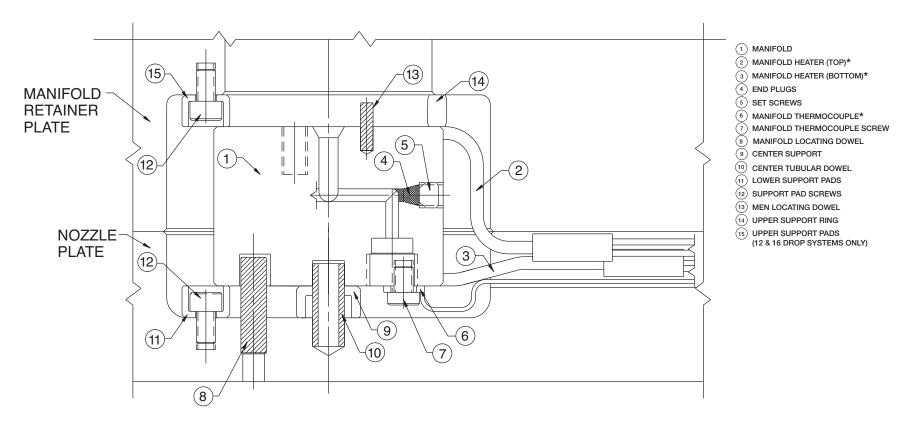
10. Locating Ring:

(if required, specify GXL2001 for heated MEN or SXL1100 for Unheated MEN)

11. Power and Thermocouple Connectors:

(5-, 8-, and 12-zone options for up to 8-drops) (2) 8-zone for 12-drops (1) 8-zone and (1) 12-zone for 16-drops

12. Combination Terminal Mounting Box with Terminal Strip:


(5-, 8-, and 12-zone options for up to 8-drops) (1) 8-zone and (1) 12-zone for 16-drops (2) 8-zone for 12-drops

	Worksheet	Example:
1.		4
2.		In-line
3.		SRC3004
4.		SXT1040
5.		SXY8085
		Heated
		1/2 in
		SXW0003 SXW0002
10.		GXL2001
11.		8-Zone
12.		8-Zone

Stellar® Rectangular MNA Ordering Information

Manifold and Components Sub-Assembly Section View

Fig. 3-1

*NOTE: Manifold heater and thermocouple bending performed at assembly.

Stellar® Rectangular MNA Ordering Information

Sub-Assembly Parts List and Item Numbers

Table 3-1

		2-DROP (30	-Pitch)	2-DROP (40-	-Pitch)	2-DROP (50	-Pitch)	2-DROP (70	-Pitch)	2-DROP (90-	-Pitch)	4-DROP (17)	x21-Pitch)	
	MANIFOLD AND COMPONENTS SUB-ASSEMBLY ITEM NO.	SRC300	SRC3002		SRC4002		SRC5002		SRC7002		SRC9002		SRC0004	
		ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	
	Manifold Sub-Assembly	ARC3002	1	ARC4002	1	ARC5002	1	ARC7002	1	ARC9002	1	ARC0004	1	
embly	Manifold Thermocouple	SXC2001	1	SXC2001	1	SXC2001	1	SXC2001	1	SXC2001	1	SXC2001	1	
Manifold and Components Sub-Assembly consists of these items	Manifold Thermocouple Screw (LHCS)	M68LHCS	1	M68LHCS	1	M68LHCS	1	M68LHCS	1	M68LHCS	1	M68LHCS	1	
and Components Sub-Aconsists of these items	Manifold Locating Dowel	DP830	1	DP830	1	DP830	1	DP830	1	DP830	1	DP830	1	
omp ts of	Center Support	SXS3011	1	SXS3010	1	SXS3010	1	SXS3010	1	SXS3010	1	_	_	
nd C	Center Tubular Dowel	PH 10-26	1	PH 10-26	1	PH 10-26	1	PH 10-26	1	PH 10-26	1	PH 10-26	1	
Id ar	Upper Support Ring	SXS3040	1	SXS3040	1	SXS3040	1	SXS3040	1	SXS3040	1	SXS3040	1	
nifo	Upper Support Screws	M612LHCS	4	M612LHCS	4	M612LHCS	4	M612LHCS	4	M612LHCS	4	M612LHCS	4	
Ma	Lower Support Pads	SXS3030	4	SXS3030	4	SXS3030	4	SXS3030	4	SXS3030	4	SXS3030	4	
	Lower Support Pad Screws (SHCS)	M610	4	M610	4	M610	4	M610	4	M610	4	M610	4	
	MEN Locating Dowels	DP412	2	DP412	2	DP412	2	DP412	2	DP412	2	DP412	2	
	MANIFOLD SUB-ASSEMBLY ITEM NO.	ARC30	02	ARC400)2	ARC50	02	ARC70	02	ARC9002		ARCO	004	
ly sse		ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	
old emb of the	Manifold	MRC3002	1	MRC4002	1	MRC5002	1	MRC7002	1	MRC9002	1	MRC0004	1	
Panifol Passen sts of t	Manifold Heater Top	MRH0005	1	MRH0005	1	MRH0006	1	MRH0013	1	MRH0006	1	MRH0005	1	
Manifold Sub-Assembly consists of these items	Manifold Heater Bottom	MRH0005	1	MRH0013	1	MRH0006	1	MRH0005	1	MRH0005	1	MRH0013	1	

NOTE: All manifold sub-assemblies include end plugs and set screws installed.

Stellar® Rectangular MNA Ordering Information

Sub-Assembly Parts List and Item Numbers (continued)

Table 3-1	(continued)	4-DROP (30x30-Pitc	h)	4-DROP In-I (30-Pitch		6-DROP (30-Pitch)		8-DROP (30-Pitch)	12-DROF (30-Pitch		16-DROP (30-Pitch	
	MANIFOLD AND COMPONENTS SUB-ASSEMBLY ITEM NO.	SRC3304		SRC3004		SRC3306		SRC3308	3	SRC3312	2	SRC3316	;
		ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY
	Manifold Sub-Assembly	ARC3304	1	ARC3004	1	ARC3306	1	ARC3308	1	ARC3312	1	ARC3316	1
<u>></u>	Manifold Thermocouple	SXC2001	1	SXC2001	1	SXC2001	1	SXC2001	1	SXC2001	1	SXC2001	1
Manifold and Components Sub-Assembly consists of these items	Manifold Thermocouple Screw (LHCS)	M68LHCS	1	M68LHCS	1	M68LHCS	1	M68LHCS	1	M68LHCS	1	M68LHCS	1
and Components Sub-Aconsists of these items	Manifold Locating Dowel	DP830	1	DP830	1	DP830	1	DP830	1	DP830	1	DP830	1
onel f the	Center Support	SXS3010	1	SXS3011	1	SXS3011	1	SXS3010	1	SXS3011	1	SXS3010	1
omp sts o	Center Tubular Dowel	PH 10-26	1	PH 10-26	1	PH 10-26	1	PH 10-26	1	PH 10-26	1	PH 10-26	1
nd C	Upper Support Ring*	SXS3040	1	SXS3040	1	SXS3040	1	SXS3040	1	SXS3040	1	SXS3040	1
ld al	оррег эаррогт пінд	0//00040	'	0/00040		3/33040	'	0//00040	<u> </u>	SXS3030	4	SXS3030	4
anifo	Upper Support Screws	M612LHCS	4	M612LHCS	4	M612LHCS	4	M612LHCS	4	M612LHCS	4	M612LHCS	4
Σ̈́			· ·		<u>'</u>				ļ .	M610SHCS	4	M610SHCS	4
	Lower Support Pads	SXS3030	4	SXS3030	4	SXS3030	4	SXS3030	4	SXS3030	4	SXS3030	4
	Lower Support Pad Screws (SHCS)	M610	4	M610	4	M610	4	M610	4	M610	4	M610	4
	MEN Locating Dowels	DP412	2	DP412	2	DP412	2	DP412	2	DP412	2	DP412	2
	MANIFOLD SUB-ASSEMBLY ITEM NO.	ARC3304		ARC3004		ARC3306		ARC3308	3	ARC3312	2	ARC3316	;
bly of 1S		ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY	ITEM NO.	QTY
iifold isem sts c item	Manifold	MRC3304	1	MRC3004	1	MRC3306	1	MRC3308	1	MRC3312	1	MRC3316	1
Manifold Sub-Assembly consists of these items	Manifold Heater (bottom)	MRH0013	1	MRH0007	1	MRH0014	1	MRH0008	1	MRH0008	1	MRH0010	1
Su	Manifold Heater (bottom)	MRH0005	1	MRH0007	1	MRH0013	1	MRH0013	1	MRH0009	1	MRH0011	1

^{*}Upper support pads are required for 12- and 16-drop systems only. NOTE: All manifold sub-assemblies include end plugs and set screws installed.

Stellar® Rectangular MNA Ordering Information

Nozzle Body Information

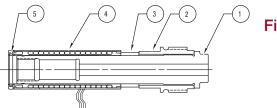


Fig. 3-2

Item Numbers for Threaded Style Standard

Heater Nozzle As	SXY0065	SXY0085	SXY0105	SXY0125	SXY0145	
SUB-ASSEMBLY COMPONENT	CALLOUT NO.	ITEM NO.	ITEM NO.	ITEM NO.	ITEM NO.	ITEM NO.
Nozzle Body -SXB4xxx	1	SXB4068	SXB4088	SXB4108	SXB4128	SXB4148
Nut	2	SXE2013	SXE2013	SXE2013	SXE2013	SXE2013
Heater Stop	3	SXD6501	SXD6501	SXD6501	SXD6501	SXD6501
Nozzle Heater	4	SHH1039	SHH1059	SHH1079	SHH1099	SHH1119
Nozzle Thermocouple	5	SXC1001	SXC1001	SXC1001	SXC1001	SXC1001

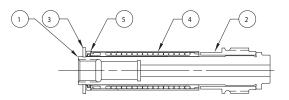


Fig. 3-3

Assembly Tools

SUB-ASSEMBLY

COMPONENT

Nozzle Body

-SXB4xxx Nut

Heater Stop

Nozzle Heater

NOTES:

Fig. 3-5 Sprue Gate Tip **Socket Tool** (SXW0003)

Fig. 3-4

ITEM

NO.

SXB4108

SXE2013

SXD6501

SXE1079

ITEM

NO.

SXB4088

SXE2013

SXD6501

SXE1059

SXY0925

ITEM

NO.

SXB4128

SXE2013

SXD6501

SXE1099

SXY0945

ITEM

NO.

SXB4148

SXE2013

SXD6501

SXE1119

Item Numbers for Threaded Style High Performance Heater Nozzle Assemblies sxy0965 sxy0985 sxy0905

ITEM

NO.

SXB4068

SXE2013

SXD6501

SXE1039

Tip information and Gating Styles are provided

For high performance heater, thermocouple is embedded

CALLOUT

NO.

1

2

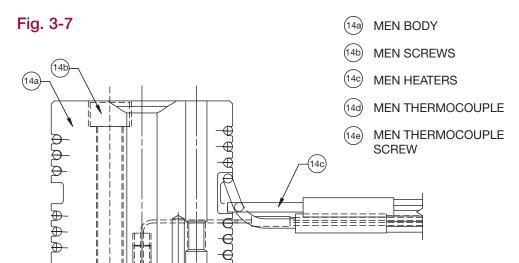
3

4

in the heater body.

on page 5, Section 1.

Nut Socket Tool Fig. 3-6 (SXW0002)



Item Numbers for Threaded Style Standard **Heater Nozzle Assemblies**

SPRUE GATE ON	SXY8065	SXY8085	SXY8105	SXY8125	SXY8145	
SUB-ASSEMBLY COMPONENT	CALLOUT NO.	ITEM NO.	ITEM NO.	ITEM NO.	ITEM NO.	ITEM NO.
Nozzle Body -SXB4xxx	1	SXB4068	SXB4088	SXB4108	SXB4128	SXB4148
Nut	2	SXE2013	SXE2013	SXE2013	SXE2013	SXE2013
Snap Ring	3	SXR1001	SXR1001	SXR1001	SXR1001	SXR1001
Nozzle Heater	4	SHH1039	SHH1059	SHH1079	SHH1099	SHH1119
Nozzle Thermocouple	5	SXC1001	SXC1001	SXC1001	SXC1001	SXC1001

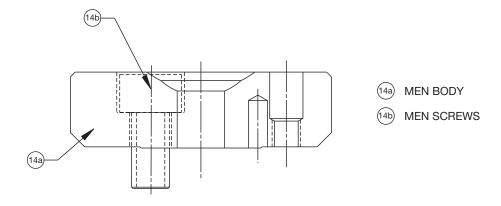
Stellar® Rectangular MNA Ordering Information

Heated MEN Sub-Assembly

NOTES:

- Customer to specify machine nozzle spherical radius. Proper MEN sub-assembly will be selected by DME to correspond with manifold sub-assembly.
- Locating ring is optional and must be ordered separately. Locating ring item no. GXL2001 includes two M820 FHCS.

		SPHERICAL RADIUS	SPHERICAL RADII	JS			
	HEATED MEN SUB-ASSEMBLY ITEM NO.	SXX1010	SXX2010				
		ITEM NO.	QTY	ITEM NO.	QTY		
Heated MEN sub-assembly consistis of these items	MEN Body	SXM1010	1	SXM2010	1		
	MEN Screws (SHCS)	M860	4	M860	4		
MEN s stis of ·	MEN Heaters	MRH0012	2	MRH0012	2		
leated ME consistis	MEN Thermocouple	SXC2001	1	SXC2001	1		
<u>+</u>	MEN Thermocouple Screw (LHCS)	M68LH	1	M68LH	1		


COMBINATION 1/2 AND 3/4 INCH

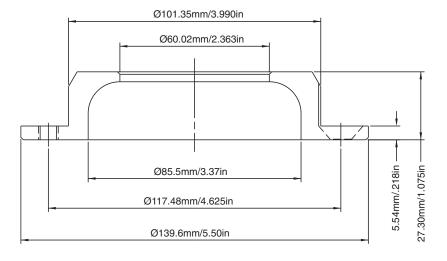
15.5mm

Stellar[®] Rectangular MNA Ordering Information

Unheated MEN Sub-Assembly

Fig. 3-8

NOTES:

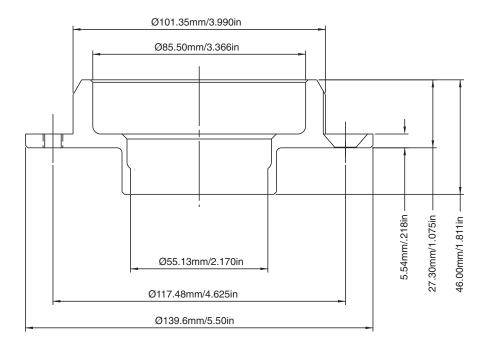

- Customer to specify machine nozzle spherical radius. Proper MEN sub-assembly will be selected by DME to correspond with manifold sub-assembly.
- Locating ring is optional and must be ordered separately. Locating ring item no. SXL1100 includes two M820 FHCS.

		COMBINATION 1/2 AND 3/4 INCH Spherical radius		15.5mm Spherical Radius	
	UNHEATED MEN SUB-ASSEMBLY ITEM NO.	SXX1210		SXX2210	
Unheated MEN sub-assembly consistis of these items		ITEM NO.	QTY	ITEM NO.	QTY
	MEN Body	SXM1210	1	SXM2210	1
	MEN Screws (SHCS)	M816	4	M816	4

Stellar® Rectangular MNA Ordering Information

Locating Rings

Fig. 3-9 Locating Ring for Heated MEN



LOCATING RING ITEM NO.

For Heated MEN GXL2001

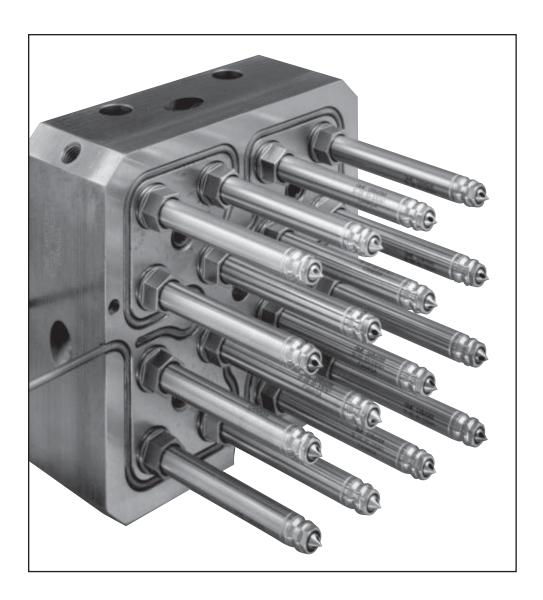
For Unheated MEN SXL1100

Fig. 3-10 Locating Ring for Unheated MEN

Stellar® Micromolding Hot Runner Systems

Stellar® Hot Runner Systems - Benefits

Excellent Results with Engineering Thermoplastics


The complexity of today's very small part molding applications demands the added properties of high performance engineered materials. Stellar was designed for outstanding processing of these materials. Challenging amorphous materials such as PET or crystalline materials including PBT and PA are easily processed with the Stellar Hot Runner System. Highly conductive tip designs and precise heat profiling in all nozzle lengths ensure consistent processing temperatures.

Modularity Increases Application Flexibility

The Stellar Hot Runner System from DME is built on a standardized architecture of modular components. Key features include:

- Choice of balanced multi-nozzle assemblies (MNAs) for stand-alone use or under a manifold for higher cavitation molds
- Threaded nozzle connection for standard manifolds and compression nozzle connection for custom manifolds
- Three different "A" dimensions from 65-105mm are available for threaded style nozzles
- Six different "A" dimensions from 55-105mm are available for compression nozzle connection
- Three interchangeable tip styles Point Gate, Thru Hole Gate and Sprue Gate

World Headquarters DME Company

29111 Stephenson Highway Madison Heights, MI 48071 800-626-6653 toll-free tel 248-398-6000 tel 888-808-4363 toll-free fax www.dme.net web appl_eng@dme.net e-mail

DME of Canada

6210 Northwest Drive Mississauga, Ontario Canada L4V 1J6 800-387-6600 toll-free tel 905-677-6370 tel 800-461-9965 toll-free fax dme_canada@dme.net e-mail

DME Europe C.V.B.A.

Industriepark Noord B-2800 Mechelen Belgium 32-15-215011 *tel* 32-15-218235 *fax* sales@dmeeu.com *e-mail*

